Область техники
Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, и предназначено для использования при разработке нейтронных и рентгеновских генераторов.
Уровень техники
Известен малогабаритный генератор нейтронов, содержащий нейтронную трубку и высоковольтный источник напряжения питания, выполненный на накопительном конденсаторе, включенном между высоковольтным источником питания и первичной обмоткой высоковольтного импульсного трансформатора (в случае биполярного питания нейтронной трубки - первичными обмотками высоковольтных импульсных трансформаторов). -Геофизическая аппаратура. :Недра, вып. 43, 1970, с. 132-146. Однако этот генератор нейтронов имеет большие габариты, не ремонтопригоден.
Известен генератор нейтронов, содержащий блок трубки (БТ) с нейтронной трубкой, схемой ее питания, выполненной на накопительном конденсаторе, включенном между высоковольтным источником питания и первичной обмоткой высоковольтного импульсного трансформатора, и блок коммутации (БК) с коммутирующим элементом, и схемой его запуска, размещенные в отдельных металлических корпусах, жестко соединенных друг с другом. Серийно выпускаемый блок ИПГ-013. Сборник материалов, Межотраслевой научно-технической конференции «Портативные генераторы нейтронов и технологии на их основе», Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова, 2004, с. 73. Выбран в качестве прототипа.
Для соединения БТ с БК в прототипе используется переходник, закрепленный на торце БТ при помощи винтов с опрессованными в полиэтилен гнездами со стороны соединения с БТ и высоковольтной розеткой на 3 гнезда со стороны соединения с БК. БК с 3-штырьковой высоковольтной вилкой соединяется с розеткой точной сборкой по направляющей втулке с пазом при помощи резьбовой накидной гайки. В этом случае используемый соединитель относительно дорог из-за большого количества применяемых высокоточных деталей. Это усложняет сборку, ремонт. Кроме того, дополнительные переходники не исключают ошибок монтажа, существенно удлиняют разрядный контур, при этом значительная часть энергии, запасенной в конденсаторе, остается в контуре и не передается в нейтронную трубку. Неиспользованная энергия выделяется в виде тепла, что приводит к перегреву генератора, уменьшению времени непрерывной работы.
Задачей изобретения является упрощение конструкции нейтронного генератора, повышение надежности, улучшение энергетических характеристик, повышение эксплуатационных характеристик.
Техническим результатом изобретения являются повышение надежности и улучшение энергетических характеристик импульсного нейтронного генератора.
Раскрытие изобретения
Технический результат достигается тем, что импульсный нейтронный генератор содержит размещенные в отдельных жестко соединенных между собой металлических корпусах блок трубки, включающий нейтронную трубку, высоковольтный импульсный трансформатор, накопительный конденсатор, и блок коммутации с коммутатором и схемой его запуска. Блоки соединены друг с другом свинчиванием двух концевых частей, одна из которых размещена на торце корпуса блока трубки, и состоит из центрального штыря и металлического токопроводящего конуса, установленных в диэлектрическом изоляторе. Центральный штырь соединен с первичной обмоткой высоковольтного импульсного трансформатора, а металлический конус - с обкладкой накопительного конденсатора. Другая концевая часть размещена на торце корпуса блока коммутации и состоит из центрального V-образного подпружиненного гнезда и металлической цанги, размещенных в диэлектрическом изоляторе, при этом центральное V-образное подпружиненное гнездо соединено с катодом коммутатора, а металлическая цанга соединена с анодом коммутатора. Корпус блока трубки содержит резьбовой элемент с наружной резьбой, расположенной коаксиально первой концевой части. Корпус блока коммутации содержит резьбовой элемент с внутренней резьбой, расположенной коаксиально второй концевой части.
Краткое описание чертежей
Сущность изобретения поясняется на фиг. 1, фиг. 2.
На фиг. 1 представлен предложенный импульсный нейтронный генератор, где:
1 - металлический корпус БТ,
2 - вакуумная нейтронная трубка,
3 - высоковольтный трансформатор отрицательной полярности импульсов,
4 - накопительный конденсатор,
5 - конденсатор источника,
6 - зарядный дроссель,
7 - металлический корпус БК,
8 - коммутирующий элемент,
9 - схема запуска коммутирующего элемента,
10 - центральный штырь,
11 - диэлектрический изолятор,
12 - токопроводящий конус,
13 - V-образное гнездо,
14 - пружина,
15 - металлическая цанга,
16 - гайка,
17 - диэлектрический изолятор,
18 - резьбовой элемент корпуса БТ с наружной резьбой,
19 - резьбовой элемент корпуса БК с внутренней резьбой,
20- стандартный разъем, через который производится питание и управление нейтронным генератором.
На фиг. 2 представлен БТ и БК в разобранном виде. Для сборки блоки свинчиваются друг с другом.
Осуществление изобретения
Импульсный нейтронный генератор выполнен в виде двух отдельных блоков: блока трубки БТ и блока коммутации БК, соединенных друг с другом коаксиальным разъемом.
Блок трубки (БТ) выполнен в металлическом корпусе 1, залитом жидким диэлектриком, внутри которого размещена нейтронная трубка 2, высоковольтный импульсный трансформатор 3, накопительный конденсатор 4, конденсатор источника 5, зарядный дроссель 6. На торце корпуса 1 закреплен резьбовой элемент с наружной резьбой 18 и установлена коаксиально концевая часть А, состоящая из штыря 10, металлического токопроводящего конуса 12, установленных в диэлектрический изолятор 13, обеспечивающий изоляцию центрального штыря 10 от конуса 12 и конуса от корпуса 1 и резьбового элемента 18. Металлический конус 12 соединен с обкладкой накопительного конденсатора 4, а центральный штырь 10 соединен с первичной обмоткой высоковольтного импульсного трансформатора 3.
Блок коммутации (БК) выполнен в металлическом корпусе 7, внутри которого размещен коммутирующий элемент 8 и схема запуска коммутирующего элемента 9. На торце корпуса 7 закреплен резьбовой элемент с внутренней резьбой 19 и коаксиально установлена концевая часть Б, состоящая из V-образного гнезда 13 с пружиной 14 и цанги 15, размещенных в диэлектрический изолятор 17, обеспечивающий изоляцию от металлической цанги 15 и цанги от корпуса 7. V-образное гнездо 13 закреплено в изоляторе 17 при помощи гайки 16 с возможностью перемещения вокруг оси.
V-образное гнездо 15 соединено с катодом коммутатора 8, а металлическая цанга 17 соединена с анодом коммутатора 8.
При свинчивании блоков концевая часть А входит в концевую часть Б так, что центральный штырь 10 прилегает к V-образному гнезду 13, а металлический конус 12 прилегает к внутренней поверхности металлической цанги 15, находясь в непрерывном контакте друг с другом. При этом диэлектрический изолятор 11 входит своими кольцевыми выступами и кольцевыми проточками в кольцевые проточки и кольцевые выступы диэлектрического изолятора 17 с зазором, обеспечивая необходимую электрическую прочность между металлическими контактами и корпусом.
Такая плавающая конструкция позволяет устранить относительное смещение контактов в концевых частях при соединении (скручивании по резьбе) блоков друг с другом.
Генератор работает следующим образом.
При подаче импульса запуска на управляющий электрод ионного источника нейтронной трубки 2 происходит разряд накопительного конденсатора 4 на первичную обмотку импульсного высоковольтного трансформатора 3. При этом на вторичной обмотке трансформатора формируется импульс напряжения амплитудой (100-150) кВ и передается на мишенный электрод трубки 2. Одновременно ионный источник нейтронной трубки 2 производит ионы дейтерия, которые ускоряются в направлении мишени. При бомбардировке мишени нейтронной трубки 2 ионами дейтерия в результате ядерной реакции T(d, n) He4 образуются нейтроны.
При прохождении тока в разрядном контуре между лепестками металлической цанги 15, как в проводниках с током действуют электродинамические силы притяжения, лепестки прижимаются к неподвижному металлическому конусу 12, а пружина 14 прижимает V-образное гнездо 13 к центральному штырю 10. Этим достигается увеличение контактного нажатия металлической цанги 15 на металлический конус 12 и центрального штыря 10 на V-образное гнездо 13, что повышает коммутационную способность разъема, устойчивость контактирования, уменьшает индуктивность и сопротивление разрядного контура.
Кроме того, результатом изобретения является упрощение конструкции нейтронного генератора, упрощение сборки-разборки блоков, их ремонта, повышение надежности и улучшение энергетических характеристик.
название | год | авторы | номер документа |
---|---|---|---|
ИМПУЛЬСНЫЙ НЕЙТРОННЫЙ ГЕНЕРАТОР | 2007 |
|
RU2356192C1 |
Импульсный нейтронный генератор | 2019 |
|
RU2703518C1 |
СХЕМА ИМПУЛЬСНОГО НЕЙТРОННОГО ГЕНЕРАТОРА | 2007 |
|
RU2364965C1 |
СКВАЖИННЫЙ ИМПУЛЬСНЫЙ НЕЙТРОННЫЙ ГЕНЕРАТОР | 2014 |
|
RU2550088C1 |
Блок излучателя нейтронов | 2019 |
|
RU2703449C1 |
БЛОК ИЗЛУЧАТЕЛЯ НЕЙТРОНОВ | 2013 |
|
RU2541509C1 |
СКВАЖИННЫЙ ИЗЛУЧАТЕЛЬ НЕЙТРОНОВ | 2014 |
|
RU2551485C1 |
Импульсный нейтронный генератор | 2021 |
|
RU2776026C1 |
БЛОК ИЗЛУЧАТЕЛЯ НЕЙТРОНОВ | 2012 |
|
RU2477027C1 |
БЛОК ИЗЛУЧАТЕЛЯ НЕЙТРОНОВ | 2009 |
|
RU2399977C1 |
Изобретение относится к области физического приборостроения и предназначено для использования при разработке нейтронных и рентгеновских генераторов. Технический результат - повышение надежности и улучшение энергетических характеристик импульсного нейтронного генератора. Импульсный нейтронный генератор содержит размещенные в отдельных жестко соединенных между собой металлических корпусах блок трубки, включающий нейтронную трубку, высоковольтный импульсный трансформатор, накопительный конденсатор, и блок коммутации с коммутатором и схемой его запуска.
Блоки соединены друг с другом свинчиванием двух концевых частей, одна из которых размещена на торце корпуса блока трубки и состоит из центрального штыря и металлического токопроводящего конуса, установленных в диэлектрическом изоляторе. Центральный штырь соединен с первичной обмоткой высоковольтного импульсного трансформатора, а металлический конус - с обкладкой накопительного конденсатора. Другая концевая часть размещена на торце корпуса блока коммутации и выполнена в виде центрального V-образного подпружиненного гнезда и металлической цанги, размещенных в диэлектрическом изоляторе, при этом центральное V-образное подпружиненное гнездо соединено с катодом коммутатора, а металлическая цанга соединена с анодом коммутатора. Корпус блока трубки содержит резьбовой элемент с наружной резьбой, расположенной коаксиально первой концевой части. Корпус блока коммутации содержит резьбовой элемент с внутренней резьбой, расположенной коаксиально второй концевой части. 2 з.п. ф-лы, 2 ил.
1. Импульсный нейтронный генератор, содержащий размещенные в отдельных жестко соединенных между собой металлических корпусах блок трубки, включающий нейтронную трубку, высоковольтный импульсный трансформатор, накопительный конденсатор, и блок коммутации с коммутатором и схемой его запуска, отличающийся тем, что блоки соединены друг с другом свинчиванием двух концевых частей, одна из которых размещена на торце корпуса блока трубки и состоит из центрального штыря и металлического токопроводящего конуса, установленных в диэлектрическом изоляторе, при этом центральный штырь соединен с первичной обмоткой высоковольтного импульсного трансформатора, а металлический конус - с обкладкой накопительного конденсатора, а другая концевая часть размещена на торце корпуса блока коммутации и выполнена в виде центрального V-образного подпружиненного гнезда и металлической цанги, размещенных в диэлектрическом изоляторе, при этом центральное V-образное подпружиненное гнездо соединено с катодом коммутатора, а металическая цанга соединена с анодом коммутатора.
2. Импульсный нейтронный генератор по п. 1, отличающийся тем, что корпус блока трубки содержит резьбовой элемент с наружной резьбой, расположенной коаксиально первой концевой части.
3. Импульсный нейтронный генератор по п. 1, отличающийся тем, что корпус блока коммутации содержит резьбовой элемент с внутренней резьбой, расположенной коаксиально второй концевой части.
Сборник материалов Межотраслевой научно-технической конференции "Портативные генераторы нейтронов и технологии на их основе", Всероссийский научно-исследовательский институт автоматики им | |||
Н.Л | |||
Духова, 2004 | |||
с | |||
Способ подготовки рафинадного сахара к высушиванию | 0 |
|
SU73A1 |
ИМПУЛЬСНЫЙ НЕЙТРОННЫЙ ГЕНЕРАТОР | 2007 |
|
RU2356192C1 |
БЛОК ИЗЛУЧАТЕЛЯ НЕЙТРОНОВ | 2013 |
|
RU2541509C1 |
US 2011176648A1, 21.07.2011 | |||
WO 2013033249A2, 07.03.2013. |
Авторы
Даты
2016-12-10—Публикация
2015-06-25—Подача