Изобретение относится к области экологии, в частности к математическому моделированию круговорота элементов в лесных экосистемах.
Известен способ определения скорости разложения растительных остатков, состоящий в оценке потери массы листьев различных видов деревьев в процессе их разложения в лабораторных условиях (микрокосме) в почвенной смеси неопределенного состава при одном значении температуры и одном значении влажности в течение 16 месяцев (De Angelis P., Chigwerewe K.S., Mugnozza G.E.S. Litter quality and decomposition in a CO2-enriched Mediterranean forest ecosystem // Plant and Soil, 2000, 224:31-41). К недостаткам этого известного способа следует отнести низкую точность выбранного метода анализа (потеря массы) и весьма значительный интервал между измерениями (один раз в четыре месяца). Уменьшение интервала между измерениями весьма затруднено, так как каждое новое измерение требует использования нового набора образцов - после проведения измерений они становятся непригодными для дальнейшего использования в эксперименте.
Также известен способ определения скорости разложения растительных остатков, состоящий в оценке эмиссии СО2 с помощью газового хроматографа в процессе разложения корней трансгенных растений гибридного тополя с измененной лигнификацией и соотношением азот:углерод, проходящем в лабораторных условиях в почвенной смеси неопределенного состава при одном значении температуры и одном значении влажности в течение 5 месяцев (Pilate G., Guiney Е., Holt K. et al. Field and pulping performances of transgenic trees with altered lignification // Nature Biotechnology, 2002, 20:607-12).
К недостаткам данного способа следует отнести короткую продолжительность эксперимента (5 месяцев), в течение которого разложению подвергаются только быстроразлагаемые фракции растительной биомассы, и отсутствие математического моделирования влияния последствий выращивания данных растений в значительных масштабах и в течение длительного периода времени на экосистему.
Наиболее близким известным прототипом является способ математического моделирования разложения органического вещества, состоящий в оценке скорости разложения растительных остатков в лабораторных условиях в почвенной смеси неопределенного состава при одном значении температуры и одном значении влажности путем определения потери массы в течение одного года и использования полученных данных в модели динамики органического вещества ROMUL (Безрукова М.Г., Быховец С.С, Грабарник П.Я. и др. Анализ неопределенности параметров модели разложения органического вещества: байесовский подход // Известия Самарского научного центра РАН, 2009, 11:1424-1429).
К недостаткам ближайшего прототипа следует отнести низкую точность выбранного метода анализа; жестко заданные значения температуры и влажности, не позволяющие оценить влияние их колебаний в естественных условиях на скорость разложения; неопределенный состав почвенной смеси, который может оказывать значительное влияние на процесс разложения и не позволяет сравнивать результаты из различных исследований; невозможность использования полученных результатов для растений тех же видов, но с модифицированным соотношением азота и углерода, которое оказывает значительное влияние на скорость разложения.
В литературе отсутствуют данные по использованию трансгенных растений в качестве биологических моделей для математического моделирования круговорота элементов в экосистемах.
Целью изобретения является прогнозирование круговорота азота и углерода в лесных экосистемах при выращивании трансгенных растений лесных древесных пород с заданными характеристиками в условиях меняющегося климата.
Поставленная задача решается благодаря тому, что в способе математического моделирования разложения органического вещества, включающем лабораторный эксперимент по длительному разложению образцов различных органов растений, данные которого используются в модели динамики органического вещества ROMUL, предусмотрено следующее отличие: объектом служат трансгенные растения древесных лесных пород с различными заданными характеристиками, вызывающими в химическом составе растений изменение соотношения азота и углерода.
Кроме того, предложенный способ отличается тем, что:
- длительность разложения растительных образцов составляет не менее одного года;
- оценка скорости разложения проводится путем определения эмиссии CO2 с помощью газового хроматографа с определенной периодичностью отбора проб воздуха;
- периодичность отбора проб воздуха составляет не менее 8 отборов в первые 10 недель разложения и не менее 8 отборов в последующее время;
- в качестве образцов используются различные органы (листья для лиственных пород или хвоя для хвойных пород, корни, стебли) одного и того же генотипа растения;
- разложение проводится в стерилизованном песке с добавлением водной вытяжки лесного растительного опада;
- разложение проводится в условиях с различными значениями (не менее трех) физических параметров, в качестве которых выступают температура и влажность.
Способ осуществляется следующим образом.
Песок, просеянный через сито 0,5 мм, промывают водопроводной водой в течение нескольких часов при периодическом перемешивании и затем не менее трех раз дистиллированной водой. Промытый песок высушивают при 105°С в течение 12 часов и затем прокаливают при 200°С в течение 3 часов. Определяют влагоемкость прокаленного песка по Минееву (2001). Растительную массу (отдельно стебли, корни, листья) измельчают секатором или ножницами и растирают в фарфоровой ступке до однородной массы, после чего высушивают при 65°С в течение трех суток. Влагоемкость растительной массы определяют аналогично песку. В стеклянные пробирки с резиновыми пробками объемом 12-15 мл добавляют растительную массу и песок в соотношении 1:10-1:20 по весу и тщательно перемешивают. Масса песка не должна превышать 2 г. Погрешность при взвешивании растительной массы и песка не должна превышать 1%. Для обеспечения разложения в пробирки добавляют 50 мкл водной вытяжки из лесного растительного опада (10 г опада заливают 0,5 л водопроводной воды, перемешивают в течение 1 ч и фильтруют) и дистиллированную воду в количестве, необходимом для достижения определенной доли влажности от влагоемкости песка и растительной массы (не менее трех вариантов). В качестве контроля используют пробирку с песком без увлажнения. Все пробирки (кроме контрольной) взвешивают с точностью до 1 мг и помещают в термостаты, обеспечивающие погрешность не более 1°C, с различной температурой (не менее трех вариантов). Для каждого варианта используют не менее трех пробирок. В ходе эксперимента пробирки периодически (не реже одного раза в месяц) взвешивают и в случае уменьшения массы более чем на 10% от начальной восполняют потерю массы дистиллированной водой до исходного значения. В течение года через определенные промежутки времени (в соответствии с планом эксперимента, но не менее 16 раз) из пробирок с помощью шприца отбирают пробы воздуха, в котором с помощью газового хроматографа определяют содержание углекислого газа. После отбора проб пробирки помещают под вытяжку, открывают и проветривают не менее 30 минут. Полученные данные используют для расчета в модели динамики органического вещества ROMUL.
Изобретение позволяет повысить точность прогнозирования круговорота азота и углерода в лесных экосистемах за счет использования более точного метода, получения большего числа данных за счет более частых измерений и использования образцов различных органов растений одного и того же вида и оценить влияние на круговорот элементов выращивания трансгенных растений с заданными характеристиками, вызывающими изменение соотношения азот:углерод, существенно влияющего на скорость разложения растительных остатков. Получение данных для различных значений температуры и влажности позволит прогнозировать круговорот элементов для различных сценариев изменения климата.
Пример 1. Влияние различных заданных характеристик трансгенных растений древесных лесных пород на соотношение азота и углерода
В ходе генетической трансформации березы рекомбинантным геном глутаминсинтетазы GS1 с целью повышения продуктивности был получен ряд клонов с ускоренным ростом и измененным соотношением азота и углерода в стеблях. Характеристики данных растений представлены в таблице 1.
В ходе генетической трансформации осины рекомбинантным геном ксилоглюканазы Xeg с целью изменения структуры и механических свойств клеточной стенки был получен ряд клонов с измененными содержанием пентозанов и соотношением азота и углерода в различных органах растений. Характеристики данных растений представлены в таблице 2.
В ходе генетической трансформации осины инвертированными повторами гена 4-кумарат-КоА-лигазы 4CL с целью модификации содержания лигнина был получен ряд клонов с измененными содержанием лигнинов и соотношением азота и углерода в различных органах растений. Характеристики данных растений представлены в таблице 3.
Пример 2. Влияние изменения соотношения азота и углерода в трансгенных растениях березы с геном глутаминсинтетазы на скорость разложения
Соотношение углерод:азот считается хорошим показателем скорости разложения растительных остатков, и наличие рекомбинантного гена глутаминсинтетазы в стеблях березы привело к заметному повышению содержания азота (снижению величины C/N) и увеличению потерь углерода при разложении стеблей березы с рекомбинантным геном глутаминсинтетазы GS1 (фиг. 1). Наиболее заметное повышение скорости разложения наблюдалось у клонов GS-8b и GS-9b, тогда как клон GS-11b практически не отличался от контрольных нетрансгенных растений.
Линейная обратная зависимость между скоростью разложения стеблей березы с рекомбинантным геном глутаминсинтетазы и величиной C/N в растительной ткани (фиг. 2) оказалась достоверной (R2=0.95), поэтому наблюдаемые различия скоростей разложения, скорее всего, связаны с различным содержанием азота в стеблях березы, которое может быть связано с переносом рекомбинантного гена глутаминситетазы GS1.
Пример 3. Влияние типа органа растения на скорость разложения
Кумулятивная эмиссия СО2 при разложении различных органов трансгенной осины с геном Xeg отражает скорость разложения растительных тканей (фиг. 3). Листья разлагаются быстрее, чем стебли, а стебли - быстрее, чем корни.
Пример 4. Влияние температуры на скорость разложения
Влияние температуры на скорость разложения трансгенных растений показано на примере контрольных и трансгенных растений осины с геном Xeg (фиг. 4а и 4б). Скорость разложения листьев и стеблей осины существенно зависела от температуры инкубирования. Она была максимальной при температуре 22°C и минимальной - при 2°C.
Пример 5. Влияние влажности на скорость разложения
Влияние влажности на скорость разложения растительных тканей показано на примере трансгенных растений осины с геном Xeg (фиг. 5а и 5б). Листья и стебли осины разлагались примерно одинаково при влажности 20 и 50% ППВ. Повышение влажности до 80% ППВ привело к небольшому (около 10%) увеличению скорости разложения листьев и стеблей как трансгенных, так и нетрансгенных растений.
Краткое описание чертежей
Фиг. 1. Скорость разложения стеблей березы при различной величине C/N.
Фиг. 2. Зависимость скорости разложения стеблей березы от величины C/N.
Фиг. 3. Кумулятивная эмиссия CO2 при разложении различных органов трансгенной осины с геном Xeg.
Фиг. 4. Влияние температуры на скорость разложения различных органов осины (а - листья; б - стебли).
Фиг. 5. Влияние влажности на скорость разложения различных органов осины (а - листья; б - стебли).
название | год | авторы | номер документа |
---|---|---|---|
ТРАНСГЕННОЕ РАСТЕНИЕ ОСИНЫ С ПОНИЖЕННОЙ СКОРОСТЬЮ РАЗЛОЖЕНИЯ ДРЕВЕСИНЫ | 2015 |
|
RU2603081C2 |
ТРАНСГЕННОЕ РАСТЕНИЕ БЕРЕЗЫ С ПОВЫШЕННОЙ ПРОДУКТИВНОСТЬЮ | 2013 |
|
RU2593721C2 |
СПОСОБ ПОЛУЧЕНИЯ ГЕНЕТИЧЕСКИ МОДИФИЦИРОВАННЫХ ДРЕВЕСНЫХ РАСТЕНИЙ | 2013 |
|
RU2582263C2 |
ТРАНСГЕННОЕ РАСТЕНИЕ ОСИНЫ С ПОВЫШЕННОЙ ПРОДУКТИВНОСТЬЮ И МОДИФИЦИРОВАННОЙ ДРЕВЕСИНОЙ | 2013 |
|
RU2593722C2 |
Трансгенное растение березы с ранним цветением | 2015 |
|
RU2619173C1 |
СПОСОБ КОМПЛЕКСНОЙ ОЦЕНКИ СОСТОЯНИЯ ЛЕСНЫХ ЭКОСИСТЕМ В РАЙОНАХ ТЕХНОГЕННОГО ВОЗДЕЙСТВИЯ ПРОМЫШЛЕННЫХ ОБЪЕКТОВ | 2011 |
|
RU2489846C2 |
ТЕХНОЛОГИЯ ВОССТАНОВЛЕНИЯ ЛЕСНЫХ ЭКОСИСТЕМ НА ТЕХНОГЕННО НАРУШЕННЫХ ТЕРРИТОРИЯХ ЕВРОПЕЙСКОГО СЕВЕРО-ВОСТОКА РОССИИ | 2007 |
|
RU2343692C1 |
ТРАНСГЕННОЕ РАСТЕНИЕ ОСИНЫ С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ ЦЕЛЛЮЛОЗЫ В ДРЕВЕСИНЕ | 2014 |
|
RU2599445C2 |
СПОСОБ ДЛИТЕЛЬНОГО ХРАНЕНИЯ IN VITRO РАСТЕНИЙ ОСИНЫ | 2012 |
|
RU2522823C2 |
ТРАНСГЕННОЕ РАСТЕНИЕ БЕРЕЗЫ С УСТОЙЧИВОСТЬЮ К ГЕРБИЦИДАМ | 2013 |
|
RU2587623C2 |
Изобретение относится к области биохимии, в частности к применению трансгенных растений лесных древесных пород в качестве биологических моделей при прогнозировании круговоротов азота и углерода в лесных экосистемах. При этом указанное применение включает лабораторный эксперимент по длительному разложению образцов различных органов растений, данные которого используются в модели динамики органического вещества ROMUL. Изобретение позволяет эффективно применять трансгенные растения в качестве биологических моделей при прогнозировании круговоротов азота и углерода в лесных экосистемах. 6 з.п. ф-лы, 5 ил., 3 табл., 5 пр.
1. Применение трансгенных растений лесных древесных пород в качестве биологических моделей при прогнозировании круговоротов азота и углерода в лесных экосистемах, включающее лабораторный эксперимент по длительному разложению образцов различных органов растений, данные которого используются в модели динамики органического вещества ROMUL, отличающееся тем, что образцами служат трансгенные растения лесных древесных пород, обладающие по сравнению с аналогами дикого типа измененным соотношением азота и углерода в химическом составе растений.
2. Применение по п. 1, отличающееся тем, что длительность разложения растительных образцов составляет не менее одного года.
3. Применение по п. 1, отличающееся тем, что оценка скорости разложения проводится путем определения эмиссии СО2 с помощью газового хроматографа с определенной периодичностью отбора проб воздуха.
4. Применение по п. 1, отличающееся тем, что периодичность отбора проб воздуха составляет не менее 8 отборов в первые 10 недель разложения и не менее 8 отборов в последующее время.
5. Применение по п. 1, отличающееся тем, что в качестве образцов используются различные органы (листья для лиственных пород или хвоя для хвойных пород, корни, стебли) одного и того же генотипа растения.
6. Применение по п. 1, отличающееся тем, что разложение проводится в стерилизованном песке с добавлением водной вытяжки лесного растительного опада.
7. Применение по п. 1, отличающееся тем, что разложение проводится в условиях с различными значениями (не менее трех) физических параметров, в качестве которых выступают температура и влажность.
БЕЗРУКОВА М.Г | |||
и др., Анализ неопределенности параметров модели разложения органического вещества: байесовский подход, Известия Самарского научного центра Российской академии наук, 2009, Т.11, стр | |||
Карточный регистратор | 1918 |
|
SU1424A1 |
PILATE G | |||
et al., Field and pulping performances of transgenic trees with altered lignification, Nat Biotechnol, 2002, Vol.20, N.6, |
Авторы
Даты
2016-12-27—Публикация
2015-03-27—Подача