Способ нанесения теплозащитного композитного покрытия Российский патент 2017 года по МПК C23C14/35 

Описание патента на изобретение RU2607056C2

Изобретение относится к области материаловедения, в частности к способам напыления теплозащитных покрытий, и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок, которые требуют формирования на рабочих поверхностях покрытий, имеющих достаточно высокое значение адгезии и когезии.

В настоящее время при создании покрытия с заданными свойствами методом послойного напыления образуются межфазные макроскопические границы в плоскостях, параллельных обрабатываемой поверхности, и при циклических термонагрузках разница в значениях коэффициентов термического расширения может привести к расслоению покрытия и его разрушению.

Известен способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на поверхность изделия из никелевого сплава, включающий формирование на поверхности изделия из никелевого сплава композитного градиентного переходного слоя со структурой металл-оксид и напыление пленки оксида циркония до достижения ею требуемой толщины (BY 13516 С1, МПК С23С 4/04, 30.08.2010 - прототип).

Недостатком способа является возможность получения сквозной пористости, приводящей к коррозии подложки и к разрушению покрытия. Кроме этого в процессе послойного напыления образуются межфазные границы в плоскостях, параллельных поверхности, и при циклических термонагрузках разница в значениях коэффициентов термического расширения может привести к расслоению покрытия и его разрушению.

Задачей предложенного технического решения является устранение указанных недостатков и создание способа нанесения оксидного покрытия на металлическую поверхность, применение которого позволит сформировать плавный переход от металлического материала к оксидному покрытию без межфазной границы макроскопического размера.

Решение указанной задачи достигается тем, что в предложенном способе нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на поверхность изделия из никелевого сплава, включающем формирование на поверхности изделия из никелевого сплава композитного градиентного переходного слоя со структурой металл-оксид и напыление пленки оксида циркония до достижения ею требуемой толщины, согласно изобретению формирование упомянутого градиентного переходного слоя со структурой металл-оксид осуществляют путем осаждения градиентного переходного слоя, содержащего металлическую фазу на основе никелевого сплава, соответствующего составу упомянутой поверхности изделия, и диэлектрическую фазу, содержащую оксиды циркония разной стехиометрии, при этом соотношение фаз в градиентном переходном слое изменяют с возрастанием доли оксидной фазы по мере увеличения толщины пленки, при этом используют магнетронную систему с двумя магнетронами, причем с помощью первого магнетрона распыляют первую мишень из никелевого сплава, а с помощью второго магнетрона распыляют вторую мишень из циркония с добавками стабилизирующих элементов, а градиентный переходный слой формируют путем совместного распыления указанных мишеней, причем сначала распыление мишеней осуществляют в атмосфере аргона с обеспечением превышения интенсивности атомного потока, сформированного от упомянутой первой мишени, над интенсивностью атомного потока от упомянутой второй мишени с формированием сплошного металлического слоя, затем осуществляют распыление в присутствии кислорода с образованием в напыляемой пленке оксида циркония при неокисленном никелевом сплаве, при этом при напылении парциальное давление кислорода плавно увеличивают до 1,5⋅10-3 Па, а мощность первого магнетрона, распыляющего первую мишень из никелевого сплава, уменьшают вплоть до его полного отключения.

Предложенный способ реализуется следующим образом.

Формирование градиентного переходного слоя со структурой металл-оксид осуществляют путем осаждения градиентного переходного слоя, содержащего металлическую фазу на основе никелевого сплава, соответствующего составу упомянутой поверхности изделия, и диэлектрическую фазу, содержащую оксиды циркония разной стехиометрии. Соотношение фаз в градиентном переходном слое изменяют с возрастанием доли оксидной фазы по мере увеличения толщины пленки, для чего используют магнетронную систему с двумя магнетронами. С помощью первого магнетрона распыляют первую мишень из никелевого сплава, а с помощью второго магнетрона распыляют вторую мишень из циркония с добавками стабилизирующих элементов. Градиентный переходный слой формируют путем совместного распыления указанных мишеней, причем сначала распыление мишеней осуществляют в атмосфере аргона с обеспечением превышения интенсивности атомного потока, сформированного от упомянутой первой мишени, над интенсивностью атомного потока от упомянутой второй мишени с формированием сплошного металлического слоя, затем осуществляют распыление в присутствии кислорода с образованием в напыляемой пленке оксида циркония при неокисленном никелевом сплаве. При напылении парциальное давление кислорода плавно увеличивают до 1,5⋅10-3 Па, а мощность первого магнетрона, распыляющего первую мишень из никелевого сплава, уменьшают вплоть до его полного отключения.

В этом случае формируемый градиентный слой является не только композитным, но и наноструктурированным, поскольку характерные размеры включений каждой фазы составляют от единиц до нескольких десятков нанометров, в зависимости от объемной доли фазы.

Полученная наноструктурированность не только повышает механическую прочность покрытия, но и приводит к изотропному распределению внутренних напряжений при циклических термонагрузках, что повышает жаропрочность и жаростойкость покрытия.

Использование предложенного технического решения позволит создать способ нанесения оксидного покрытия на металлическую поверхность, применение которого позволит сформировать плавный переход от металлического материала к оксиду без межфазной границы макроскопического размера, что в конечном итоге позволит повысить механическую прочность покрытия и приведет к изотропному распределению внутренних напряжений при циклических термонагрузках, что позволит повысить жаропрочность и жаростойкость покрытия.

Похожие патенты RU2607056C2

название год авторы номер документа
Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую поверхность изделия 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2606815C2
Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую поверхность изделия 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2607055C2
Теплозащитное нанокомпозитное покрытие и способ его формирования 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2606814C2
Способ формирования на поверхности изделия из никелевого сплава композитного покрытия 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2607677C2
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ ИЗ ОКСИДА ЦИРКОНИЯ НА ПОВЕРХНОСТЬ ИЗДЕЛИЯ ИЗ НИКЕЛЕВОГО СПЛАВА 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2581546C2
Способ формирования на рабочей поверхности детали из никелевого сплава теплозащитного нанокомпозитного покрытия 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2606826C2
СПОСОБ ОБРАБОТКИ РАБОЧИХ ПОВЕРХНОСТЕЙ ГАЗОТУРБИННЫХ УСТАНОВОК 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2588956C2
СПОСОБ ОБРАБОТКИ РАБОЧИХ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ЛОПАСТНЫХ МАШИН 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2588973C2
СПОСОБ ОБРАБОТКИ РАБОЧИХ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ГАЗОТУРБИННЫХ УСТАНОВОК 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2591024C2
НАНОСТРУКТУРНОЕ КОМПОЗИТНОЕ ПОКРЫТИЕ ИЗ ОКСИДА ЦИРКОНИЯ 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2588619C2

Реферат патента 2017 года Способ нанесения теплозащитного композитного покрытия

Изобретение относится к напылению теплозащитных покрытий и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на поверхность изделия из никелевого сплава включает формирование на поверхности упомянутого изделия композитного градиентного переходного слоя со структурой металл-оксид и напыление пленки оксида циркония до достижения ею требуемой толщины. Формирование упомянутого градиентного переходного слоя со структурой металл-оксид осуществляют путем осаждения градиентного переходного слоя, содержащего металлическую фазу на основе никелевого сплава, соответствующего составу упомянутой поверхности изделия, и диэлектрическую фазу, содержащую оксиды циркония разной стехиометрии, при этом соотношение фаз в градиентном переходном слое изменяют с возрастанием доли оксидной фазы по мере увеличения толщины пленки. Используют магнетронную систему с двумя магнетронами, причем с помощью первого магнетрона распыляют первую мишень из никелевого сплава, а с помощью второго магнетрона распыляют вторую мишень из циркония с добавками стабилизирующих элементов. Градиентный переходный слой формируют путем совместного распыления указанных мишеней. Сначала распыление мишеней осуществляют в атмосфере аргона с обеспечением превышения интенсивности атомного потока, сформированного от упомянутой первой мишени, над интенсивностью атомного потока от упомянутой второй мишени с формированием сплошного металлического слоя. Затем осуществляют распыление в присутствии кислорода с образованием в напыляемой пленке оксида циркония при неокисленном никелевом сплаве. При напылении парциальное давление кислорода плавно увеличивают до 1,5⋅10-3 Па, а мощность первого магнетрона, распыляющего первую мишень из никелевого сплава, уменьшают вплоть до его полного отключения. Обеспечивается механическая прочность покрытия, повышение его жаропрочности и жаростойкости, а также высокое значение адгезии и когезии покрытия на рабочих поверхностях изделий.

Формула изобретения RU 2 607 056 C2

Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на поверхность изделия из никелевого сплава, включающий формирование на поверхности изделия из никелевого сплава композитного градиентного переходного слоя со структурой металл-оксид и напыление пленки оксида циркония до достижения ею требуемой толщины, отличающийся тем, что формирование упомянутого градиентного переходного слоя со структурой металл-оксид осуществляют путем осаждения градиентного переходного слоя, содержащего металлическую фазу на основе никелевого сплава, соответствующего составу упомянутой поверхности изделия, и диэлектрическую фазу, содержащую оксиды циркония разной стехиометрии, при этом соотношение фаз в градиентном переходном слое изменяют с возрастанием доли оксидной фазы по мере увеличения толщины пленки, при этом используют магнетронную систему с двумя магнетронами, причем с помощью первого магнетрона распыляют первую мишень из никелевого сплава, а с помощью второго магнетрона распыляют вторую мишень из циркония с добавками стабилизирующих элементов, а градиентный переходный слой формируют путем совместного распыления указанных мишеней, причем сначала распыление мишеней осуществляют в атмосфере аргона с обеспечением превышения интенсивности атомного потока, сформированного от упомянутой первой мишени, над интенсивностью атомного потока от упомянутой второй мишени с формированием сплошного металлического слоя, затем осуществляют распыление в присутствии кислорода с образованием в напыляемой пленке оксида циркония при неокисленном никелевом сплаве, при этом при напылении парциальное давление кислорода плавно увеличивают до 1,5⋅10-3 Па, а мощность первого магнетрона, распыляющего первую мишень из никелевого сплава, уменьшают вплоть до его полного отключения.

Документы, цитированные в отчете о поиске Патент 2017 года RU2607056C2

Приспособление при лущильном станке для разрезания фанеры (шпона) на куски одинакового размера 1928
  • Р. Стэнлей
  • Э. Меррит
SU13516A1
EP 1374992 B1, 15.02.2006;EP 1541714 A1, 15.06.2005.

RU 2 607 056 C2

Авторы

Стогней Олег Владимирович

Валюхов Сергей Георгиевич

Бурыкин Валерий Евгеньевич

Филатов Максим Сергеевич

Черниченко Владимир Викторович

Даты

2017-01-10Публикация

2014-04-29Подача