Бета-вольтаический полупроводниковый генератор электроэнергии Российский патент 2017 года по МПК H01L31/04 

Описание патента на изобретение RU2608058C1

Изобретение относится к полупроводниковой технике, в частности к созданию компактных источников электроэнергии с использованием радиоактивных изотопов и полупроводниковых преобразователей. Предлагается конструкция полупроводникового устройства для прямого преобразования бета-излучения в электроэнергию. Батарея электропитания состоит из радиоактивного источника, испускающего бета-частицы с достаточно большой кинетической энергией, изолятора, сквозь который эти электроны проходят, и коллектора, собирающего электроны. Зажимы, предусмотренные на радиоактивном источнике и на коллекторе, служат внешними выводами батареи. Поскольку электроны уходят с электрода радиоактивного источника, на нем возникает положительный заряд. Накапливаясь на коллекторном электроде, электроны заряжают его отрицательным зарядом. В результате между двумя электродами создается ЭДС. Если к двум внешним выводам батареи присоединить провод, то по нему потечет ток от коллектора к радиоактивному эмиттеру. Такие батареи электропитания обладают большими значениями ЭДС и удельной энергоемкости. Радиоактивное вещество нанесено на пластину из полупроводника с развитой поверхностью. Текстурированная поверхность пластины полупроводника содержит большое количество пор и каналов, а радиоактивное вещество нанесено на стенки пор и каналов, а также и на остальную часть поверхности пластины полупроводника. Изобретение обеспечивает возможность упрощения способа создания устройства, снижения стоимости изготовления бета-вольтаического генератора, а также повышения его удельной мощности и надежности в эксплуатации.

Предлагаемый генератор является основным первичным элементом, из которых путем соответствующих коммутаций могут собираться батареи бесперебойного электропитания со сроком службы 50 и более лет, безопасные в обращении и работоспособные независимо от условий окружающей среды, исключая физическое разрушение.

Наиболее полно поставленным задачам отвечают батареи, работающие на бета-вольтаическом эффекте. Работа бета-вольтаического преобразователя основана на том, что излученные при распаде радионуклида электроны или позитроны высоких энергий, попадая в область p-n-перехода полупроводниковой пластины, генерируют там электронно-дырочную пару, которая затем пространственно разделяется областью пространственного заряда (ОПЗ). Вследствие этого на n- и p-поверхностях полупроводниковой пластины возникает разность электрических потенциалов. Принципиально механизм преобразования напоминает тот, который реализован в полупроводниковых солнечных батареях, но с заменой фотонного облучения на облучение электронами или позитронами - продуктами распада радионуклидов.

Первые работы по бета-вольтаическим преобразователям с использованием стронция-90 относятся к середине 50-х годов XX столетия [Rappaport R.I., Lofersky J.J., Linder E.G. A study program of possible uses principle. Nucleonic. 1957. vol. 15, р. 99]. Энергия электронов, испускаемых стронцием-90, составляет 546 кэВ. Эта величина почти вдвое превышает порог радиационных повреждений кристаллической структуры полупроводника, вследствие чего происходит неизбежная деградация p-n-перехода. Вторым недостатком преобразователя, использующего радионуклид стронция-90, является довольно высокий уровень вредного для человека проникающего гамма-излучения, что требует создания громоздкой радиационной защиты. Исследования преобразователей с использованием прометия-147 и трития, наносимых на плоскую поверхность полупроводниковых структур из кремния, проводились в 1975 г. [Гусев В.В., Кодюков В.М., Почтаков А.А., Пустовалов А.А. Радиационная техника. М.: Атомиздат, 1975, вып. 11, с. 61-67]. Особенностью преобразования энергии радиоактивного распада в электрическую энергию в данном случае является то, что используется кремниевый полупроводник с p-n-переходом. Недостатком конструкций с прометием-147 является непродолжительный срок службы, обусловленный малым периодом полураспада этого радионуклида (2,64 года). Труднопреодолимая проблема, связанная с распадом прометия-147 по параллельным путям, приводящая к образованию дочерних радиоактивных атомов, порождает нежелательные радиационные эффекты.

В последние годы в научной литературе появился ряд сообщений о бета-вольтаическом эффекте на кремнии с применением радионуклида никеля-63, энергетические параметры которого существенно превышают энергию бета-излучения трития [Pchelintseva Ye.S. Modelirovaniye I issledovaniye betavoltaicheskogo effekta na kremniyevykh pin strukturakh: Dissertatsiya k.f-m.n., Ulyanovsk: UlGU Publ., 2011; Nagornov Yu.S. Sovremennyye aspekty primeneniya betavoltaicheskogo effekta. Ulyanovsk, 2012]. Выбор изотопов, обладающих бета-распадом с приемлемым временем жизни и уровнем энергии бета-распада, ограничивается всего несколькими радионуклидами - тритий, никель-63, стронций-90, цезий-137 и кадмий-113m. Проведенный анализ физических свойств радионуклидов и расчет параметров позволили сделать следующие выводы:

1. В ряду радионуклидов наиболее перспективным на сегодняшний день с точки зрения повышения удельной мощности преобразователей является никель-63, имеющий период полураспада 100,1 год.

2. Среди известных и доступных полупроводниковых материалов, таких как арсенид галлия, карбид кремния, кремниевые пористые материалы, наиболее выгодным из числа перечисленных по эксплуатационным характеристикам является последний.

Одним из путей повышения удельной электрической мощности преобразователя может быть увеличение площади поверхности диодной структуры, покрытой источником бета-излучения. Для этого используется текстурирование пластин кремния. Этот прием использован в следующей работе [Заддэ В.В., Пустовалов А.А., Пустовалов С.А., Цветков Л.А., Цветков С.Л. Полупроводниковый преобразователь бета-излучения в электроэнергию. Патент №2452060, 10.12.2011 г.]. Задачей цитированного изобретения является упрощение способа и снижение стоимости изготовления бета-преобразователя, повышение его удельной электрической мощности и надежности в эксплуатации. Указанная задача решается тем, что в полупроводниковом преобразователе бета-излучения в электроэнергию, содержащем пластину полупроводника с текстурированной поверхностью, диодную структуру, на которую наносят слой радионуклида (никеля-63, трития), создают и формируют особым способом. Текстурированная диодная поверхность выполняется в виде множества узких цилиндрических сквозных пор, вертикально расположенных, проникающих сквозь весь p-слой полупроводникового диода. Слой радионуклида (никеля-63, трития) покрывает стенки пор и остальную часть поверхности пластины полупроводника. Использование макропористой структуры для изготовления бета-вольтаического генератора связано с технологическими трудностями формирования диодной структуры и возможностью нанесения радиоактивных слоев в узких сквозных порах. Вместе с тем, в результате таких мероприятий увеличивается стоимость изготовления бета-преобразователя, а реально образующаяся неравномерность толщины слоев снижает срок его службы, нанесение множества узких сквозных пор уменьшает механическую прочность пластины полупроводника.

Наиболее близким к предложенному бета-вольтаическому полупроводниковому генератору электроэнергии является источник, содержащий полупроводниковую пластину с развитой поверхностью и слой никеля-63 на данной поверхности. В объеме пластины создается пористая структура, состоящая из узких пор и глухих «колодцев», залегающих на разной глубине матрицы [By Wei Sun, N.P. Kherani et. al. Three-Dimensional Porous Silicon p-n Diode for Betavoltaic and Photovoltaics. Advanced Materials. 2005, 17, 1231-1233.]. Создание пор и «колодцев» на поверхности матрицы формируют условия для увеличения поверхности, на которую можно нанести источник излучения. Такая структура именуется макропористой и характеризуется тем, что глубина пор и «колодцев» во много раз больше их поперечного размера.

Существующий прототип обладает весьма ограниченными характеристиками, такими как малая энергоемкость, ограниченный срок службы из-за низкой прочности полупроводниковой матрицы, трудоемкость создания конструкции.

Недостатком этой конструкции является сложность формирования диодной структуры и создания полноценного покрытия из никеля-63 в узких и глубоких «колодцах», образующих текстурированную поверхность пластин кремния. Это связано с тем, что диффузия атомов радионуклида в узкие поры и «колодцы», расположенные на поверхности, затруднена из-за их малых размеров. В результате стоимость изготовления бета-вольтаического преобразователя оказывается высокой, а его эффективность низкой. Стандартные методы электрохимического травления кремниевой поверхности, применяющиеся при изготовлении пористого материала из кремниевой матрицы, используют для этих целей фторсодержащие материалы. Фтороводород, являющийся активным началом реакции травления, при данном изготовлении полупроводниковой матрицы проникает в стенки образующихся микропор и колодцев полупроводникового диода, разрушая ее. Это приводит к «разрыхлению» материала и, как следствие, к утрате механической прочности изделия. Этот важный фактор следует учитывать при прогнозировании долговечности материалов, образующихся с использованием метода электрохимического травления. Кроме того, следует учитывать, что на стенки микропор бета-вольтаического полупроводникового преобразователя наносится радионуклид никеля-63 с максимально высоким содержанием радиоактивности. Разрушение полупроводникового материала происходит весьма быстро за счет авторадиолиза под воздействием бета-частиц радионуклида. Учитывать этот фактор необходимо, поскольку речь идет о создании на основе такой кремниевой матрицы длительно работающих электронных устройств.

С целью создания полупроводниковых пластин кремния с развитой поверхностью для изготовления бета-вольтаического полупроводникового генератора электроэнергии предлагается использовать метод локальной лазерной деструкции. Метод локальной лазерной деструкции, предлагаемый к использованию в данном изобретении, является современным. наиболее подходящим способом для формирования текстурированной поверхности пластин из кремния. Этот метод позволяет создавать поры и «колодцы» в объеме кремниевой матрицы требуемых размеров и глубины залегания. Кроме того, данным способом можно создавать специальные камеры расширения и горизонтальные проходы в теле полупроводниковой матрицы, без утраты ею механических свойств. Метод позволяет осуществлять контроль за объемом и географией расположения камер и горизонтальных проходов. Метод локальной лазерной деструкции лишен недостатков, типичных для способа электрохимического травления кремниевых материалов. Следует отметить, что ранее метод локальной лазерной деструкции для изготовления пористых полупроводниковых матриц, для изготовления бета-вольтаического полупроводникового генератора электроэнергии не применялся.

При создании новых бета-вольтаических генераторов электроэнергии с расширенными энергетическими возможностями следует учитывать, что дополнительное повышение удельной мощности бета-вольтаического генератора может достигаться тем, что диаметр, глубина, численность и объем микропор и «колодцев», количество боковых «камер» в них могут изменяться с целью максимального увеличения площади поверхности путем создания нового пористого кремниевого полупроводникового материала. В данном случае стенки макропор и глухих «колодцев» могут быть сформированы без потери механической прочности матрицы и иметь нужные объем и текстурированность (фрактальность). Размеры пор должны быть достаточными для обеспечения попадания в них радиоактивного никеля путем диффузии. Кроме того, следует особо отметить, что повышение удельной мощности бета-вольтаического генератора достигается оптимизацией глубины залегания «колодцев» в p-слое, а также увеличением эффективного ОПЗ в зоне p-n-перехода, образующегося в кремниевой матрице.

В настоящем изобретении поставлена задача создания бета-вольтаического генератора электроэнергии с повышенной энергоемкостью, сроком службы 50-70 лет, при минимальной трудоемкости, затраченной на изготовление изделия.

С целью создания полупроводниковых пластин кремния с развитой поверхностью для изготовления бета-вольтаического полупроводникового генератора электроэнергии был использован метод локальной лазерной деструкции.

Данная задача решается следующим образом.

Бета-вольтаический полупроводниковый генератор электроэнергии, содержащий полупроводниковую пластину с развитой поверхностной структурой, содержащей макропоры, представляющие собой глухие отверстия-«колодцы», и слой никеля-63, покрывающий полупроводниковую пластину, отличающийся тем, что в глухих отверстиях-«колодцах», на их боковой поверхности образованы микропоры в виде боковых камер, при этом никель-63 покрывает поверхностную структуру и остальную часть поверхности пластины полупроводника слоем 0.03-0.05 нм.

В бета-вольтаическом полупроводниковом генераторе электроэнергии, согласно изобретению стенки пор и глухие отверстия-«колодцы» имеют заданную фрактальность, форму, объемы камер расширения и лежат на определенном, заранее заданном расстоянии от p-n-перехода пластины полупроводника, выполнены с помощью локальной лазерной деструкции.

Эффективное применение бета-источников в составе бета-вольтаического полупроводникового генератора электроэнергии обусловлено его конструкцией и поясняется с помощью рис. 1-3.

На рис. 1 схематично изображена предлагаемая конструкция единичного элемента питания полупроводникового бета-вольтаического генератора электроэнергии с применением радионуклида никеля-63. При рассмотрении устройства сделаны допущения о том, что, во-первых, порядка 50% бета-частиц излучаемых Ni-63? попадает на поверхность кремниевой пластины. Во-вторых, предполагается, что около 90% бета-частиц переходит в объем кремниевой пластины, а 10% излучаемых бета-частиц составляют потери. На рис. 2 и 3 представлены результаты исследования поверхности методом сканирующей электронной микроскопии образцов макропористого кремния, полученные методом лазерной деструкции (слева - вид сбоку, рис. 2; справа - вид сверху, рис. 3).

Бета-вольтаический генератор состоит из диодной пластины (рис. 1), поверхность которой содержит отверстия-«колодцы» требуемой формы. На расчетной глубине в «колодцах» расположены камеры-расширения, задача которых состоит в увеличении рабочих объемов и фрактальности пор - «колодцев» (рис. 2 и 3). С использованием метода лазерной деструкции рабочие объемы пор - «колодцев» могут быть увеличены на 30-40%, что определяется конструктивными особенностями и задачами, возникающими при при создании полупроводникового бета-вольтаического генератора электроэнергии.

Поверхность диодной пластины покрыта токопроводящим слоем 0.03-0.05 нм радионуклида никеля-63 (позиция 3, рис. 1), выполняющим роль токосъемного контакта и являющимся источником бета-частиц. Толщина слоя определяется длиной максимального пробега бета-частиц в слое никеля. В базовой области полупроводник расположен на стальной пластине, которая является вторым коллекторным контактом бета-вольтаического генератора (позиция 1). В теле диодной пластины на определенной глубине расположен p-n-переход (позиция 2).

Создание микропор и отверстий-«колодцев» на поверхности позволяет многократно увеличивать активную площадь поверхности полупроводника, покрытой слоем радионуклида, что ведет к повышению мощности бета-вольтаического полупроводникового генератора. Глубина залегания, увеличение объемов «колодцев» за счет создания боковых камер в них существенно влияют на ток генерации. Для формирования структуры с максимальным выходным током необходимо, чтобы ширина пор составляла 20-40 нм, длина порядка 400-600 нм, с глубиной залегания (в области максимальной генерации ОПЗ) 100-250 нм.

На рис. 2 и 3 показано расположение камер-расширений в микропорах и колодцах, задача которых состоит в увеличении рабочих объемов и фрактальности поверхности полупроводника.

Конструкцию бета-вольтаического полупроводникового генератора электроэнергии предлагается создавать следующим образом.

Для изготовления пластины пористого полупроводника используют микрокристаллический кремний. Поверхность пластин обрабатывают методом локальной лазерной деструкции по специальной компьютерной программе на лазерном сканере. По определенной схеме наносят на поверхность микропоры и глухие «колодцы», снабженные камерами расширения нужного объема и залегающие на требуемой глубине. Создают поры на поверхности полупроводника с размерами: ширина - 20÷40 нм, длина - 400÷600 нм и глубина - 100÷250 нм. В зависимости от требований можно получать 2500-3000 пор на площади 1 см2.

С целью создания токопроводящего слоя поверхность полупроводниковой пластины покрывают металлическим никелем. Для этого пластину помещают при температуре 80-100°С и перемешивании в течение 24 час в раствор, содержащий 1 М NiSO4, 2,5 М NH4F, а также 0,7 М додецилат сульфата натрия при pH 5,6 [С. Xu et. al. Journal of the Electrochemical Society. 2007, 154, D170-174]. Далее торцевые и базовые стороны пластины покрывают полимерной защитной пленкой и помещают в раствор Ni-63 (с удельной радиоактивностью 7,5 Ки/г) при тех же условиях, указанных ранее. Специально выбранные температурный и временной интервалы создают благоприятные условия для получения равномерного распределения Ni-63 по пористой поверхности полупроводникового диода. Использование нерадиоактивного металлического никеля значительно упрощает методику равномерного нанесения радиоактивного никеля на поверхность, что существенно способствует увеличению ЭДС бета-вольтаического генератора электроэнергии. Процесс завершается снятием защитной пленки. Рабочий этап изготовления бета-вольтаического генератора электроэнергии завершается прикреплением контактов - коллекторного к базовой стороне полупроводника и к стороне, покрытой никелем.

При работе генератора бета-вольтаический эффект возникает благодаря попаданию бета частиц в область пространственного заряда (ОПЗ) p-n-перехода, где встроенное электрическое поле разделяет генерированные носители заряда, в результате чего возникает наведенный потенциал, так же как это происходит в фотовольтаических генераторах при облучении светом. В случае если р-- и n+-области замкнуть накоротко или через внешнее сопротивление нагрузки, в цепи потечет ток. Таким образом, генерируемая энергия может быть использована в электрических схемах.

Похожие патенты RU2608058C1

название год авторы номер документа
Бета-вольтаический полупроводниковый генератор электроэнергии и способ его изготовления 2015
  • Мандругин Андрей Александрович
  • Баранов Николай Николаевич
RU2607835C1
Бета-вольтаический генератор электроэнергии и способ повышения его эффективности 2015
  • Мандругин Андрей Александрович
  • Баранов Николай Николаевич
RU2610037C2
ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ БЕТА-ИЗЛУЧЕНИЯ В ЭЛЕКТРОЭНЕРГИЮ 2010
  • Заддэ Виталий Викторович
  • Пустовалов Алексей Антонович
  • Пустовалов Сергей Алексеевич
  • Цветков Лев Алексеевич
  • Цветков Сергей Львович
RU2452060C2
ГИБКИЙ БЕТАВОЛЬТАИЧЕСКИЙ ЭЛЕМЕНТ 2016
  • Давыдов Андрей Анатольевич
  • Марковин Сергей Александрович
  • Федоров Евгений Николаевич
  • Шадский Алексей Станиславович
RU2631861C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ БЕТА-ВОЛЬТАИЧЕСКИХ ЯЧЕЕК НА ОСНОВЕ РАДИОНУКЛИДА НИКЕЛЬ-63 2019
  • Горкунов Алексей Анатольевич
  • Дьячков Алексей Борисович
  • Лабозин Антон Валерьевич
  • Миронов Сергей Михайлович
  • Панченко Владислав Яковлевич
  • Поликарпов Михаил Алексеевич
  • Фирсов Валерий Александрович
  • Цветков Глеб Олегович
RU2715735C1
БЕТА-ВОЛЬТАИЧЕСКАЯ БАТАРЕЯ 2016
  • Гаврилов Петр Михайлович
  • Меркулов Игорь Александрович
  • Друзь Дмитрий Витальевич
  • Тихомиров Денис Валерьевич
  • Бараков Борис Николаевич
  • Козловский Андрей Петрович
  • Перетокин Алексей Сергеевич
  • Журавлев Константин Сергеевич
  • Гилинский Александр Михайлович
  • Зеленков Павел Викторович
  • Лелеков Александр Тимофеевич
  • Сидоров Виктор Геннадьевич
  • Ковалев Игорь Владимирович
  • Богданов Сергей Викторович
RU2632588C1
УСТРОЙСТВО ГЕНЕРИРОВАНИЯ ЭЛЕКТРИЧЕСКОГО ТОКА ПОСРЕДСТВОМ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ РАДИОХИМИЧЕСКОГО БЕТА-РАСПАДА С-14 2019
  • Долгополов Михаил Вячеславович
  • Сурнин Олег Леонидович
  • Чепурнов Виктор Иванович
RU2714690C2
Преобразователь ионизирующих излучений с сетчатой объемной структурой и способ его изготовления 2017
  • Мурашев Виктор Николаевич
  • Леготин Сергей Александрович
  • Краснов Андрей Андреевич
  • Диденко Сергей Иванович
  • Кузьмина Ксения Андреевна
  • Синева Мария Владимировна
RU2659618C1
РАДИОИЗОТОПНЫЙ ЭЛЕМЕНТ ЭЛЕКТРИЧЕСКОГО ПИТАНИЯ С ПОЛУПРОВОДНИКОВЫМ ПРЕОБРАЗОВАТЕЛЕМ, СОВМЕЩЕННЫМ С ИСТОЧНИКОМ ИЗЛУЧЕНИЯ 2017
  • Давыдов Андрей Анатольевич
  • Зайцев Павел Александрович
  • Тухватулин Шамиль Талибулович
  • Фёдоров Евгений Николаевич
  • Шадский Алексей Станиславович
RU2670710C9
КВАНТОВО-РАДИОИЗОТОПНЫЙ ГЕНЕРАТОР ПОДВИЖНЫХ НОСИТЕЛЕЙ ЗАРЯДА И ФОТОНОВ В КРИСТАЛЛИЧЕСКОЙ РЕШЕТКЕ ПОЛУПРОВОДНИКА 2015
  • Войтович Виктор Евгеньевич
  • Гордеев Александр Иванович
  • Думаневич Анатолий Николаевич
RU2654829C2

Иллюстрации к изобретению RU 2 608 058 C1

Реферат патента 2017 года Бета-вольтаический полупроводниковый генератор электроэнергии

Изобретение относится к полупроводниковой технике, в частности к созданию компактных источников электроэнергии с использованием радиоактивных изотопов и полупроводниковых преобразователей. Бета-вольтаический полупроводниковый генератор электроэнергии содержит полупроводниковую пластину с развитой поверхностной структурой, содержащей макропоры, представляющие собой глухие отверстия-«колодцы», и слой никеля-63, покрывающий полупроводниковую пластину, при этом в глухих отверстиях-«колодцах», на их боковой поверхности, образованы микропоры в виде боковых камер, при этом никель-63 покрывает поверхностную структуру и остальную часть поверхности пластины полупроводника слоем 0.03-0.05 нм. Стенки глухих микропор и «колодцев» имеют произвольную фрактальность, форму и объемы камер расширения, выполнены с помощью локальной лазерной деструкции. Изобретение обеспечивает возможность формирования бета-вольтаического генератора электроэнергии с повышенной энергоемкостью, сроком службы 50-70 лет, при минимальной трудоемкости, затраченной на изготовление изделия. 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 608 058 C1

1. Бета-вольтаический полупроводниковый генератор электроэнергии, содержащий полупроводниковую пластину с развитой поверхностной структурой, содержащей макропоры, представляющие собой глухие отверстия-«колодцы», и слой никеля-63, покрывающий полупроводниковую пластину, отличающийся тем, что в глухих отверстиях-«колодцах», на их боковой поверхности, образованы микропоры в виде боковых камер, при этом никель-63 покрывает поверхностную структуру и остальную часть поверхности пластины полупроводника слоем 0.03-0.05 нм.

2. Бета-вольтаический полупроводниковый генератор электроэнергии по п. 1, отличающийся тем, что стенки пор и глухие отверстия-«колодцы» имеют заданную фрактальность, форму, объемы камер расширения и лежат на определенном, заранее заданном расстоянии от p-n-перехода пластины полупроводника, выполнены с помощью локальной лазерной деструкции.

Документы, цитированные в отчете о поиске Патент 2017 года RU2608058C1

By Wei Sun et al, Three-Dimensional Porous Silicon p-n Diode for Betavoltaic and Photovoltaics
Advanced Materials
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
KR2090038593A, 21.04.2009
ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ БЕТА-ИЗЛУЧЕНИЯ В ЭЛЕКТРОЭНЕРГИЮ 2010
  • Заддэ Виталий Викторович
  • Пустовалов Алексей Антонович
  • Пустовалов Сергей Алексеевич
  • Цветков Лев Алексеевич
  • Цветков Сергей Львович
RU2452060C2
US2012186637A1, 26.07.2012
US6774531B1, 10.08.2004
US2011079791A1, 07.04.2011.

RU 2 608 058 C1

Авторы

Мандругин Андрей Александрович

Баранов Николай Николаевич

Даты

2017-01-12Публикация

2015-07-14Подача