Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях.
Известен аналог - способ работы парогазовой установки электростанции (см. Буров В.Д., Дорохов Е.В., Елизаров Д.П. и др. Тепловые электрические станции. М.: Издательство МЭИ, 2007, рис. 15.12, с. 388), по которому органическое топливо и сжатый в турбокомпрессоре атмосферный воздух подают в камеру сгорания газотурбинной установки, где осуществляется процесс горения органического топлива с образованием нагретых до высокой температуры продуктов сгорания, образовавшиеся газы направляют в газовую турбину, в газовой турбине осуществляется процесс расширения газов и совершается работа газотурбинного цикла, затрачиваемая на привод турбокомпрессора и электрогенератора, отработавшие в газовой турбине газы направляют в котел-утилизатор, в котле-утилизаторе в процессе охлаждения газов генерируется водяной пар, водяной пар подают в паровую турбину конденсационного типа, состоящую из цилиндра высокого давления и цилиндра низкого давления, а отработавшие газы по выхлопному газоходу отводят в атмосферу, в паровой турбине осуществляется процесс расширения водяного пара и совершается полезная работа паротурбинного цикла, затрачиваемая на привод электрического генератора, отработавший в паровой турбине водяной пар отводят в конденсатор, где в процессе теплообмена с циркуляционной водой осуществляют конденсацию водяного пара, образовавшийся в конденсаторе конденсат насосом подают в котел-утилизатор. Данный способ принят за прототип.
К причине, препятствующей достижению указанного ниже технического результата при реализации известного способа работы парогазовой установки электростанции, принятого за прототип, относится то, что парогазовая установка электростанции обладает пониженной надежностью и экономичностью работы, так как не производится промежуточный перегрев водяного пара, отработавшего в цилиндре высокого давления (ЦВД) паровой турбины. При отсутствии промежуточного перегрева водяного пара повышается влажность пара на выходе из паровой турбины, что снижает надежность паровой турбины за счет эрозионного износа лопаток последних ступеней цилиндра низкого давления (ЦНД). При этом снижается экономичность работы паровой турбины, так как не производится дополнительный подвод теплоты к водяному пару в паротурбинном цикле. Таким образом, при отсутствии промежуточного перегрева частично отработавшего в паровой турбине конденсационного типа водяного пара снижаются надежность и экономичность работы паровой турбины и парогазовой установки электростанции.
Сущность изобретения заключается в следующем.
Для повышения надежности и экономичности парогазовой установки электростанции путем повышения степени сухости и располагаемого теплоперепада водяного пара, целесообразно произвести вторичный перегрев водяного пара, отработавшего в цилиндре высокого давления паровой турбины конденсационного типа, теплотой газов, нагретых в камере дополнительного сжигания топлива, установленной в котле-утилизаторе. В этом случае повышается надежность работы паровой турбины конденсационного типа за счет снижения эрозионного износа лопаток последних ступеней паровой турбины в результате повышения степени сухости водяного пара, расширяющегося в цилиндре низкого давления турбины. Кроме того, повышается располагаемый теплоперепад водяного пара в ЦНД паровой турбины конденсационного типа за счет подвода к нему дополнительной теплоты в промежуточном пароперегревателе, расположенном в хвостовой части котла-утилизатора после камеры дополнительного сжигания топлива и являющемся последней теплообменной поверхностью котла-утилизатора по ходу движения газов, что увеличивает мощность паровой турбины конденсационного типа.
Технический результат - повышение надежности и экономичности работы парогазовой установки электростанции.
Указанный технический результат при осуществлении изобретения достигается тем, что в известном способе работы парогазовой установки электростанции, по которому органическое топливо и сжатый в турбокомпрессоре атмосферный воздух подают в камеру сгорания газотурбинной установки, где осуществляется процесс горения органического топлива с образованием нагретых до высокой температуры продуктов сгорания, образовавшиеся газы направляют в газовую турбину, в газовой турбине осуществляется процесс расширения газов и совершается работа газотурбинного цикла, затрачиваемая на привод турбокомпрессора и электрогенератора, отработавшие в газовой турбине газы направляют в котел-утилизатор, в котле-утилизаторе в процессе охлаждения газов генерируется водяной пар, водяной пар подают в паровую турбину конденсационного типа, состоящую из цилиндра высокого давления и цилиндра низкого давления, а отработавшие газы по выхлопному газоходу отводят в атмосферу, в паровой турбине осуществляется процесс расширения водяного пара и совершается полезная работа паротурбинного цикла, затрачиваемая на привод электрического генератора, отработавший в паровой турбине водяной пар отводят в конденсатор, где в процессе теплообмена с циркуляционной водой осуществляют конденсацию водяного пара, образовавшийся в конденсаторе конденсат насосом подают в котел-утилизатор, особенность заключается в том, что в котле-утилизаторе устанавливают камеру дополнительного сжигания топлива и промежуточный пароперегреватель, при этом осуществляют промежуточный перегрев отработавшего в цилиндре высокого давления паровой турбины конденсационного типа водяного пара в промежуточном пароперегревателе, расположенном в хвостовой части котла-утилизатора после камеры дополнительного сжигания топлива и являющемся последней теплообменной поверхностью котла-утилизатора по ходу движения газов.
При осуществлении промежуточного перегрева водяного пара, отработавшего в ЦВД, снижается влажность пара на выходе из паровой турбины конденсационного типа, что повышает ее надежность за счет уменьшения эрозионного износа лопаток последних ступеней ЦНД. При этом повышается экономичность работы паровой турбины конденсационного типа, так как производится дополнительный подвод теплоты к водяному пару перед подачей его в ЦНД.
На чертеже представлена схема парогазовой установки электростанции, реализующая предлагаемый способ, где показаны: газовая турбина 1, турбокомпрессор 2, камера сгорания 3, электрогенератор 4, котел-утилизатор, включающий основную теплообменную поверхность 5, камеру дополнительного сжигания топлива 6 и промежуточный пароперегреватель 7, паровая турбина конденсационного типа 8, состоящая из цилиндра высокого давления и цилиндра низкого давления, конденсатор 9, электрический генератор 10 и насос 11.
Способ реализуется следующим образом.
В турбокомпрессор 2 газотурбинной установки подают атмосферный воздух, где осуществляется процесс сжатия воздуха до необходимого давления, после чего сжатый воздух направляют в камеру сгорания 3, куда также подают органическое топливо. Образовавшиеся в камере сгорания 3 продукты сгорания смешивают с вторичным воздухом. Смесь продуктов сгорания с вторичным воздухом (газы) подают в газовую турбину 1, в которой газы совершают полезную работу газотурбинного цикла, затрачиваемую на привод турбокомпрессора 2 и электрического генератора 4 газотурбинной установки.
Отработавшие в газовой турбине 1 газы подают в основную теплообменную поверхность 5 котла-утилизатора, где в процессе теплообмена генерируется пар высоких параметров, который направляют в паровую турбину конденсационного типа 8. После основной теплообменной поверхности 5 котла-утилизатора охлажденные газы направляют в камеру дополнительного сжигания топлива 6, где в среде газов осуществляют сжигание дополнительного топлива. При этом температура газов возрастает, а коэффициент избытка воздуха снижается. Подогретые газы подают в промежуточный пароперегреватель 7, являющийся последней теплообменной поверхностью котла-утилизатора по ходу движения газов. В промежуточном пароперегревателе газы повторно охлаждают в процессе передачи теплоты от потока газов к водяному пару, после чего газы отводят в атмосферу через дымовую трубу (не показана).
В основной теплообменной поверхности 5 котла-утилизатора генерируют водяной пар высокого давления, который направляют в цилиндр высокого давления паровой турбины конденсационного типа 8. В ЦВД паровой турбины конденсационного типа 8 осуществляют процесс расширения водяного пара, после чего отработавший водяной пар с пониженными значениями температуры и давления подают в расположенный в хвостовой части котла-утилизатора 5 промежуточный пароперегреватель 7, являющийся последней теплообменной поверхностью котла-утилизатора по ходу движения газов. В промежуточном пароперегревателе 7 водяной пар вторично перегревают до заданной температуры. Затем вторично перегретый водяной пар направляют в ЦНД паровой турбины конденсационного типа 8, где осуществляется процесс расширения водяного пара и совершается полезная работа паротурбинного цикла, затрачиваемая на привод электрического генератора 10. Отработавший в паровой турбине конденсационного типа 8 водяной пар подают в конденсатор 9, в котором осуществляют процесс конденсации водяного пара за счет подачи в конденсатор 9 циркуляционной воды, после чего образовавшийся в конденсаторе 9 конденсат насосом 11 направляют в основную теплообменную поверхность 5 котла-утилизатора.
Таким образом, осуществление промежуточного перегрева водяного пара, отработавшего в части низкого давления паровой турбины, теплотой газов, нагретых в камере дополнительного сжигания топлива, позволяет повысить надежность и экономичность работы парогазовой установки электростанции путем повышения степени сухости и располагаемого теплоперепада водяного пара.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РАБОТЫ ПАРОГАЗОВОЙ УСТАНОВКИ ЭЛЕКТРОСТАНЦИИ | 2020 |
|
RU2756940C1 |
Способ работы парогазовой установки электростанции | 2022 |
|
RU2801652C1 |
Парогазовая установка электростанции | 2022 |
|
RU2794404C1 |
Способ работы парогазовой установки электростанции | 2023 |
|
RU2806956C1 |
Парогазовая установка электростанции | 2023 |
|
RU2806955C1 |
Парогазовая установка электростанции с параллельной схемой работы | 2020 |
|
RU2756880C1 |
СПОСОБ РАБОТЫ ПАРОГАЗОВОЙ УСТАНОВКИ ЭЛЕКТРОСТАНЦИИ | 2016 |
|
RU2620610C1 |
СПОСОБ РАБОТЫ ПАРОГАЗОВОЙ УСТАНОВКИ ЭЛЕКТРОСТАНЦИИ | 2018 |
|
RU2693567C1 |
СПОСОБ РАБОТЫ ПАРОГАЗОВОЙ УСТАНОВКИ ЭЛЕКТРОСТАНЦИИ | 2020 |
|
RU2740670C1 |
СПОСОБ ЗАМЕЩЕНИЯ ГАЗОТУРБИННОГО ТОПЛИВА В ЭНЕРГЕТИЧЕСКИХ ЦИКЛАХ | 2003 |
|
RU2258147C1 |
Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. Технический результат - повышение надежности и экономичности работы парогазовой установки электростанции. Предлагается способ работы парогазовой установки электростанции, по которому органическое топливо и сжатый в турбокомпрессоре атмосферный воздух подают в камеру сгорания газотурбинной установки, где осуществляется процесс горения органического топлива с образованием нагретых до высокой температуры продуктов сгорания, образовавшиеся газы направляют в газовую турбину, в газовой турбине осуществляется процесс расширения газов и совершается работа газотурбинного цикла, затрачиваемая на привод турбокомпрессора и электрогенератора, отработавшие в газовой турбине газы направляют в котел-утилизатор, в котле-утилизаторе в процессе охлаждения газов генерируется водяной пар, водяной пар подают в паровую турбину конденсационного типа, состоящую из цилиндра высокого давления и цилиндра низкого давления, а отработавшие газы по выхлопному газоходу отводят в атмосферу, в паровой турбине осуществляется процесс расширения водяного пара и совершается полезная работа паротурбинного цикла, затрачиваемая на привод электрического генератора, отработавший в паровой турбине водяной пар отводят в конденсатор, где в процессе теплообмена с циркуляционной водой осуществляют конденсацию водяного пара, образовавшийся в конденсаторе конденсат насосом подают в котел-утилизатор, при этом осуществляют промежуточный перегрев отработавшего в цилиндре высокого давления паровой турбины конденсационного типа водяного пара в промежуточном пароперегревателе, расположенном в хвостовой части котла-утилизатора после камеры дополнительного сжигания топлива. 1 ил.
Способ работы парогазовой установки электростанции, по которому органическое топливо и сжатый в турбокомпрессоре атмосферный воздух подают в камеру сгорания газотурбинной установки, где осуществляется процесс горения органического топлива с образованием нагретых до высокой температуры продуктов сгорания, образовавшиеся газы направляют в газовую турбину, в газовой турбине осуществляется процесс расширения газов и совершается работа газотурбинного цикла, затрачиваемая на привод турбокомпрессора и электрогенератора, отработавшие в газовой турбине газы направляют в котел-утилизатор, в котле-утилизаторе в процессе охлаждения газов генерируется водяной пар, водяной пар подают в паровую турбину конденсационного типа, состоящую из цилиндра высокого давления и цилиндра низкого давления, а отработавшие газы по выхлопному газоходу отводят в атмосферу, в паровой турбине осуществляется процесс расширения водяного пара и совершается полезная работа паротурбинного цикла, затрачиваемая на привод электрического генератора, отработавший в паровой турбине водяной пар отводят в конденсатор, где в процессе теплообмена с циркуляционной водой осуществляют конденсацию водяного пара, образовавшийся в конденсаторе конденсат насосом подают в котел-утилизатор, отличающийся тем, что в котле-утилизаторе устанавливают камеру дополнительного сжигания топлива и промежуточный пароперегреватель, при этом осуществляют промежуточный перегрев отработавшего в цилиндре высокого давления паровой турбины конденсационного типа водяного пара в промежуточном пароперегревателе, расположенном в хвостовой части котла-утилизатора после камеры дополнительного сжигания топлива и являющемся последней теплообменной поверхностью котла-утилизатора по ходу движения газов.
Буров В.Д., Дорохов Е.В., Елизаров Д.П | |||
Тепловые электрическиестанции | |||
М.: Издательский дом МЭИ, 2007, рис | |||
Прибор для нагревания перетягиваемых бандажей подвижного состава | 1917 |
|
SU15A1 |
Транспортир | 1922 |
|
SU393A1 |
Цанев С | |||
В | |||
и др | |||
Газотурбинные и парогазовые установки тепловых электростанций | |||
М.: Издательский дом МЭИ, 2009 | |||
с | |||
Способ уравновешивания движущихся масс поршневых машин | 1925 |
|
SU427A1 |
Разборный с внутренней печью кипятильник | 1922 |
|
SU9A1 |
Костюк А.Г | |||
и др., Турбины тепловых и атомных электрических станций | |||
М.: Издательский дом МЭИ, 2001 | |||
с | |||
Прибор для равномерного смешения зерна и одновременного отбирания нескольких одинаковых по объему проб | 1921 |
|
SU23A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Устройство для подачи металла в форму машины литья под давлением | 1960 |
|
SU133566A1 |
Комбинированная парогазовая установка | 1991 |
|
SU1815346A1 |
Парогазовая установка | 1989 |
|
SU1668711A1 |
Авторы
Даты
2017-02-21—Публикация
2015-08-25—Подача