СТЕНД ДЛЯ ИСПЫТАНИЙ ВЗРЫВОЗАЩИТНЫХ ЭЛЕМЕНТОВ Российский патент 2017 года по МПК F42D5/45 F42B39/14 A62C35/00 

Описание патента на изобретение RU2611238C1

Изобретение относится к машиностроению и может быть использовано для взрывозащиты технологического оборудования.

Наиболее близким техническим решением к заявленному объекту является способ определения эффективности взрывозащитного устройства, патент РФ №2488074, F16D 3/04, (прототип), в котором испытывают корпус клапана, затвор, теплоизолирующий и разрывной элементы.

Недостатком известного решения является сравнительно невысокая надежность срабатывания разрывной мембраны.

Технический результат - повышение эффективности защиты технологического оборудования от взрывов путем увеличения быстродействия и надежности срабатывания разрывных элементов.

Это достигается тем, что в стенде для испытаний взрывозащитных элементов в испытательном боксе устанавливается макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения, при этом видеокамеры выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете, после чего регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем, который закрывают взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко фиксируют в потолке макета, а на втором крепят горизонтальную перекладину, между взрывным осколочным элементом и проемом устанавливают трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединяют с входом блока записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления располагают датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры, после обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте.

На фиг. 1 показана общая принципиальная схема стенда для испытаний взрывозащитных элементов, на фиг. 2 - схема потолочной части макета, на фиг. 3 - схема размещения тензорезисторов на динамометре, скорректированная с общей принципиальной схемой устройства по позициям блока 17 записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов 18 записанных осциллограмм протекающих процессов изменения технологических параметров в макете 1 взрывоопасного объекта.

Стенд для испытаний взрывозащитных элементов содержит макет 1 взрывоопасного объекта с установленным в нем взрывным осколочным элементом 14 с инициатором взрыва 13, защитный чехол 2 и поддон 3, при этом чехол с поддоном представляют собой единую замкнутую конструкцию, образованную вокруг макета 1 взрывоопасного объекта, размещенного в испытательном боксе 8. Кроме того, макет 1 оборудован транспортной 6 и подвесной 5 системами, а защитный чехол 2 выполнен многослойным и состоящим из обращенного внутрь к макету 1 алюминиевого слоя, затем резинового и перкалевого слоев. Подвесная система состоит из комплекта скоб и растяжек 5, размещенных на защитном чехле, а также необходимого количества анкерных крюков (петель) в потолке, стенах и полу испытательного бокса 8. Транспортная система 6 предназначена для удаления разрушенного макета 1 после проведения испытаний из испытательного бокса 8 вместе с защитным чехлом 2.

Транспортная система представляет собой тележку с дышлом. На раме тележки крепятся проставки, на которые устанавливаются и крепятся поддон и макет 1. Внутри макета 1 взрывоопасного объекта, по его внутреннему и внешнему периметрам, установлены видеокамеры 7 и 4 видеонаблюдения за процессом развития ЧС, смоделированной посредством взрывного осколочного элемента 14 с инициатором взрыва 13, причем видеокамеры 4 и 7 выполнены во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок 10 соединены с блоком 17 записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов 18 записанных осциллограмм протекающих процессов изменения технологических параметров в макете 1 взрывоопасного объекта.

В потолочной части макета 1 выполнен проем 15, который закрыт взрывозащитным элементом 16, установленным по свободной посадке на трех упругих штырях 19, один конец каждого из которых жестко вмонтирован в потолок макета 1, а на втором имеется горизонтальная перекладина.

На штырях 19 (фиг. 2) к их горизонтальной перекладине закреплены динамометры 20 (фиг. 3), предназначенные для измерения взрывного усилия, развиваемого взрывозащитным элементом 16, установленным по свободной посадке на трех упругих штырях 19 над проемом 15. Каждый из динамометров 20 выполнен в виде по крайней мере двух листовых рессор 21 и 22, один конец каждой из которой жестко закреплен на листах-упорах 19, а второй - на свободно размещенной и охватывающей штыри втулке 23. При этом листовые рессоры 21 и 22 выполнены арочного типа с выпуклостью, направленной в сторону от штырей, а на периферийной части выпуклости каждой листовой рессоры 21 и 22 закреплены тензорезисторы 24 и 25, причем на одной рессоре 21 с внутренней стороны, а на другой 22 - с внешней, для регистрации как напряжений сжатия, так и растяжения, при этом сигналы с тензорезисторов 24 и 25 поступают по каналам 26 и 27 на тензоусилитель 28, а с него на блок 17 (фиг. 1) записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов 18 (фиг. 1) записанных осциллограмм протекающих процессов изменения технологических параметров в макете 1 взрывоопасного объекта.

Между взрывным осколочным элементом 14 и проемом 15, выполненным в потолочной части макета 1 и закрытым взрывозащитным элементом 16, по фронту движения взрывной волны установлен трехкоординатный датчик давления 9 во взрывозащитном исполнении, выход которого соединен с входом блока 17 записывающей и регистрирующей аппаратуры.

По обе стороны от датчика давления 9 расположены датчики температуры 29 и влажности 30, контролирующие термовлажностный режим в макете 1, выходы которых также соединены с входом блока 17 записывающей и регистрирующей аппаратуры. Внутренние поверхности ограждений макета 1 обклеены тензодатчиками 12 (тензорезисторами), а внешние - тензодатчиками 11, выходы которых также соединены с входом блока 17 записывающей и регистрирующей аппаратуры. Устройство монтируется следующим образом: поддон 3 с помощью проставок 10 и болтов (на чертеже не показано) крепится к опорным лапам (на чертеже не показано) макета 1, а также через проставки (на чертеже не показано) крепится болтовым соединением на раму транспортной системы 6. Защитный чехол 2 после предварительной примерки и отладки подвесной системы 5 подвязывается к потолку испытательного бокса 8 над макетом 1, поддоном 3 и транспортной системой 6. После проведения подготовительных к подрыву операций с макетом 1 и взрывным осколочным элементом 14 с инициатором взрыва 13, выведения и герметизации коммуникаций и подсоединения соответствующих электрических цепей, чехол монтируется вокруг макетом 1, герметично соединяется с поддоном и растягивается с помощью подвесной системы, образуя замкнутое герметичное пространство (объем) вокруг макета 1.

В макете 1 устанавливают набор взрывных осколочных элементов 14, состоящий по крайней мере из двух взрывных осколочных элементов, соединенных соответственно с инициаторами взрыва 13, при этом испытания начинают с взрывного осколочного элемента, меньшего по тротиловому эквиваленту, по сравнению с последующими, при этом устанавливают дополнительные видеокамеры видеонаблюдения, выполненные во взрывозащитном исполнении, и проводят дополнительную оценку эффективности взрывозащитного исполнения взрывных осколочных элементов, и определяют при этом посредством компьютерного моделирования масштабы чрезвычайной ситуации при взрывах на объектах по хранению взрывных осколочных элементов.

Стенд для испытаний взрывозащитных элементов работает следующим образом.

В испытательном боксе 8 устанавливают макет 1 взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры 7 и 4 видеонаблюдения за процессом развития чрезвычайной ситуации при аварии на взрывоопасном объекте, которую моделируют посредством установки в макете 1 взрывного осколочного элемента 14 с инициатором взрыва 13, при этом видеокамеры 4 и 7 выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок 10 соединяют с блоком 17, и производят запись и регистрацию протекающих процессов изменения технологических параметров в макете 1, после чего регистрируют посредством системы анализаторов 18 записанных осциллограмм протекающих процессов изменения технологических параметров в макете 1 взрывоопасного объекта. В потолочной части макета 1 выполняют проем 15, который закрывают взрывозащитным элементом 16, установленным по свободной посадке на трех упругих штырях 19, один конец каждого из которых жестко фиксируют в потолке макета 1, а на втором крепят горизонтальную перекладину. Между взрывным осколочным элементом 14 и проемом 15 устанавливают трехкоординатный датчик давления 9 во взрывозащитном исполнении, выход которого соединяют с входом блока 17 записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления 9 располагают датчики температуры 20 и влажности 21, контролирующие термовлажностный режим в макете 1, выходы которых также соединяют с входом блока 17 записывающей и регистрирующей аппаратуры. Внутренние поверхности ограждений макета 1 обклеивают тензодатчиками 12 (тензорезисторами), а внешние - тензодатчиками 11, выходы которых также соединяют с входом блока 17 записывающей и регистрирующей аппаратуры. При этом испытания начинают с взрывного осколочного элемента, меньшего по тротиловому эквиваленту по сравнению с последующими, при этом устанавливают дополнительные видеокамеры видеонаблюдения, выполненные во взрывозащитном исполнении, и проводят дополнительную оценку эффективности взрывозащитного исполнения взрывных осколочных элементов и определяют при этом посредством компьютерного моделирования масштабы чрезвычайной ситуации при взрывах на объектах по хранению взрывных осколочных элементов. После обработки полученных экспериментальных данных составляют математическую модель, прогнозирующую аварии на взрывоопасном объекте.

Похожие патенты RU2611238C1

название год авторы номер документа
СТЕНД ДЛЯ ИССЛЕДОВАНИЙ ПАРАМЕТРОВ ВЗРЫВОЗАЩИТНЫХ УСТРОЙСТВ 2016
  • Кочетов Олег Савельевич
RU2617741C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОСТИ ВЗРЫВОЗАЩИТЫ В ИСПЫТАТЕЛЬНОМ МАКЕТЕ ВЗРЫВООПАСНОГО ОБЪЕКТА 2015
  • Кочетов Олег Савельевич
RU2586689C1
СТЕНД ДЛЯ ИССЛЕДОВАНИЙ ПАРАМЕТРОВ ВЗРЫВОЗАЩИТНЫХ УСТРОЙСТВ В ИСПЫТАТЕЛЬНОМ МАКЕТЕ ВЗРЫВООПАСНОГО ОБЪЕКТА 2017
  • Кочетов Олег Савельевич
RU2645361C1
СТЕНД ДЛЯ ИССЛЕДОВАНИЙ ПАРАМЕТРОВ ВЗРЫВОЗАЩИТНЫХ УСТРОЙСТВ В ИСПЫТАТЕЛЬНОМ МАКЕТЕ ВЗРЫВООПАСНОГО ОБЪЕКТА 2017
  • Кочетов Олег Савельевич
RU2652032C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОСТИ ВЗРЫВОЗАЩИТЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2016
  • Кочетов Олег Савельевич
RU2602552C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОСТИ ВЗРЫВОЗАЩИТЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Кочетов Олег Савельевич
RU2578219C1
СТЕНД ДЛЯ ИСПЫТАНИЙ УСТРОЙСТВ, ДЕМПФИРУЮЩИХ ВЗРЫВНУЮ ВОЛНУ ПРИ АВАРИИ НА ВЗРЫВООПАСНОМ ОБЪЕКТЕ 2016
  • Кочетов Олег Савельевич
RU2632373C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОСТИ ВЗРЫВОЗАЩИТЫ 2016
  • Кочетов Олег Савельевич
RU2613986C1
СПОСОБ КОЧЕТОВА ВЗРЫВОЗАЩИТЫ С СИСТЕМОЙ ОПОВЕЩЕНИЯ О ВОЗНИКНОВЕНИИ ЧРЕЗВЫЧАЙНОЙ СИТУАЦИИ 2016
  • Кочетов Олег Савельевич
RU2616090C1
УСТРОЙСТВО ПРОГНОЗИРОВАНИЯ РАЗВИТИЯ ЧРЕЗВЫЧАЙНОЙ СИТУАЦИИ ПРИ АВАРИИ НА ВЗРЫВООПАСНОМ ОБЪЕКТЕ 2015
  • Кочетов Олег Савельевич
RU2595549C1

Иллюстрации к изобретению RU 2 611 238 C1

Реферат патента 2017 года СТЕНД ДЛЯ ИСПЫТАНИЙ ВЗРЫВОЗАЩИТНЫХ ЭЛЕМЕНТОВ

Изобретение относится к машиностроению и может быть использовано для взрывозащиты технологического оборудования. В стенде для испытаний взрывозащитных элементов в испытательном боксе устанавливается макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете. В потолочной части макета выполнен проем, который закрывают взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко фиксируют в потолке макета, а на втором крепят горизонтальную перекладину. Между взрывным осколочным элементом и проемом установлен трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединен с входом блока записывающей и регистрирующей аппаратуры. Внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры. Достигается повышение эффективности защиты технологического оборудования от взрывов путем увеличения быстродействия и надежности срабатывания разрывных элементов. 3 ил.

Формула изобретения RU 2 611 238 C1

Стенд для испытаний взрывозащитных элементов, содержащий размещенный в испытательном боксе макет взрывоопасного объекта с установленным в нем взрывным осколочным элементом с инициатором взрыва, защитный чехол и поддон, чехол с поддоном представляют собой единую замкнутую конструкцию, образованную вокруг макета взрывоопасного объекта, а макет оборудован транспортной и подвесной системами, защитный чехол выполнен многослойным и состоящим из обращенного внутрь к макету алюминиевого слоя, затем резинового и перкалевого слоев, а подвесная система состоит из комплекта скоб и растяжек, размещенных на защитном чехле, а также необходимого количества анкерных крюков в потолке, стенах и полу испытательного бокса, системы мониторинга и обработки полученной информации об опасной зоне содержат видеокамеры видеонаблюдения, выполненные во взрывозащитном исполнении и расположенные внутри макета взрывоопасного объекта по его внутреннему и внешнему периметрам, а выходы с видеокамер соединены с блоком записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, причем в потолочной части макета выполнен проем, который закрыт взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко вмонтирован в потолок макета, а на втором имеется горизонтальная перекладина, между взрывным осколочным элементом и проемом, выполненным в потолочной части макета и закрытым взрывозащитным элементом по фронту движения взрывной волны, установлен трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединен с входом блока записывающей и регистрирующей аппаратуры, причем по обе стороны от датчика давления расположены датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединены с входом блока записывающей и регистрирующей аппаратуры, внутренние и внешние поверхности ограждений макета обклеены тензодатчиками, выходы которых также соединены с входом блока записывающей и регистрирующей аппаратуры, отличающийся тем, что в макете установлен набор взрывных осколочных элементов, состоящий по крайней мере из двух взрывных осколочных элементов, соответственно соединенных с инициаторами взрыва, при этом установлены дополнительные видеокамеры видеонаблюдения, выполненные во взрывозащитном исполнении, а на каждом упругом штыре к горизонтальной перекладине закреплены динамометры, предназначенные для измерения взрывного усилия, развиваемого взрывозащитным элементом, который установлен по свободной посадке на упомянутых трех упругих штырях над проемом, причем каждый из динамометров выполнен в виде по крайней мере двух листовых рессор, один конец каждой из которых жестко закреплен на листах-упорах, а второй - на свободно размещенной и охватывающей штыри втулке, при этом листовые рессоры выполнены арочного типа с выпуклостью, направленной в сторону от каждого упругого штыря, а на периферийной части выпуклости каждой листовой рессоры закреплены тензорезисторы, причем на одной рессоре с внутренней стороны, а на другой – с внешней для регистрации как напряжений сжатия, так и растяжения, при этом сигналы с тензорезисторов направляются на тензоусилитель, а с него на блок записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта для проведения дополнительной оценки эффективности взрывозащитного исполнения взрывных осколочных элементов и определения при этом посредством компьютерного моделирования масштаба чрезвычайной ситуации при взрывах на объектах по хранению взрывных осколочных элементов.

Документы, цитированные в отчете о поиске Патент 2017 года RU2611238C1

СПОСОБ ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОСТИ ВЗРЫВОЗАЩИТЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Кочетов Олег Савельевич
RU2488074C1
Устройство для группового регулирования возбуждения генераторов 1958
  • Альтерман Д.З.
SU120569A1
НОВЫЕ РЕЦЕПТОРЫ ДЛЯ Helicobacter pylori И ИХ ПРИМЕНЕНИЕ 2002
  • Миллер-Подраза Халина
  • Тенеберг Сусанн
  • Онгстрем Йонас
  • Карльссон Карл-Андерс
  • Натунен Яри
RU2306140C2
US 3648613 A, 14.03.1972.

RU 2 611 238 C1

Авторы

Кочетов Олег Савельевич

Даты

2017-02-21Публикация

2016-03-14Подача