СПОСОБ ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОСТИ ВЗРЫВОЗАЩИТЫ Российский патент 2017 года по МПК G01M7/00 F42D5/45 G08B21/12 

Описание патента на изобретение RU2613986C1

Изобретение относится к машиностроению и может быть использовано для взврывозащиты технологического оборудования.

Наиболее близким техническим решением к заявленному объекту является способ определения эффективности взрывозащитного устройства патенту РФ №2548256 F 16 D 3/04, (прототип), в испытательном боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры, при этом видеокамеры выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете, после чего регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем, который закрывают взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко фиксируют в потолке макета, а на втором крепят горизонтальную перекладину, между взрывным осколочным элементом и проемом устанавливают трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединяют с входом блока записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления располагают датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры, после обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте. Недостатком известного решения является сравнительно невысокая надежность срабатывания разрывной мембраны.

Технический результат - повышение эффективности защиты технологического оборудования от взрывов путем увеличения быстродействия и надежности срабатывания разрывных элементов.

Это достигается тем, что в способе определения эффективности взрывозащитного устройства с разрывной мембраной в испытательном боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения, при этом видеокамеры выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете, после чего регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем, который закрывают взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко фиксируют в потолке макета, а на втором крепят горизонтальную перекладину, между взрывным осколочным элементом и проемом устанавливают трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединяют с входом блока записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления располагают датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры, после обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте.

На фиг. 1 показана принципиальная схема устройства для реализации способа определения эффективности взрывозащиты, на фиг. 2 и 3 представлены варианты схем взрывозащитного элемента со встроенным индикатором безопасности и демпфирующими элементами.

Устройство для реализации способа определения эффективности взрывозащиты содержит макет 1 взрывоопасного объекта с установленным в нем взрывным осколочным элементом 14 с инициатором взрыва 13, защитный чехол 2 и поддон 3, при этом чехол с поддоном представляют собой единую замкнутую конструкцию, образованную вокруг макета 1 взрывоопасного объекта, размещенного в испытательном боксе 8. Кроме того, макет 1 оборудован транспортной 6 и подвесной 5 системами, а защитный чехол 2 выполнен многослойным и состоящим из обращенного внутрь к макету 1 алюминиевого слоя, затем резинового и перкалевого слоев. Подвесная система состоит из комплекта скоб и растяжек 5, размещенных на защитном чехле, а также необходимого количества анкерных крюков (петель) в потолке, стенах и полу испытательного бокса 8. Транспортная система 6 предназначена для удаления разрушенного макета 1 после проведения испытаний из испытательного бокса 8 вместе с защитным чехлом 2.

Транспортная система представляет собой тележку с дышлом. На раме тележки крепятся проставки, на которые устанавливаются и крепятся поддон и макет 1. Внутри макета 1 взрывоопасного объекта, по его внутреннему и внешнему периметрам, установлены видеокамеры 7 и 4 видеонаблюдения за процессом развития ЧС, смоделированной посредством взрывного осколочного элемента 14 с инициатором взрыва 13, причем видеокамеры 4 и 7 выполнены во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок 10 соединены с блоком 17 записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов 18 записанных осциллограмм протекающих процессов изменения технологических параметров в макете 1 взрывоопасного объекта. В потолочной части макета 1 выполнен проем 15, который закрыт взрывозащитным элементом 16, установленным по свободной посадке на трех упругих штырях 19, один конец каждого из которых, жестко вмонтирован в потолок макета 1, а на втором имеется горизонтальная перекладина. Между взрывным осколочным элементом 14 и проемом 15, выполненным в потолочной части макета 1 и закрытым взрывозащитным элементом 16, по фронту движения взрывной волны установлен трехкоординатный датчик давления 9 во взрывозащитном исполнении, выход которого соединен с входом блока 17 записывающей и регистрирующей аппаратуры. По обе стороны от датчика давления 9 расположены датчики температуры 20 и влажности 21, контролирующие термовлажностный режим в макете 1, выходы которых также соединены с входом блока 17 записывающей и регистрирующей аппаратуры. Внутренние поверхности ограждений макета 1 обклеены тензодатчиками 12 (тензорезисторами), а внешние - тензодатчиками 11, выходы которых также соединены с входом блока 17 записывающей и регистрирующей аппаратуры. Устройство монтируется следующим образом: поддон 3 с помощью проставок 10 и болтов (не показано) крепится к опорным лапам (на чертеже не показано) макета 1, а также через проставки (не показано) крепится болтовым соединением на раму транспортной системы 6. Защитный чехол 2 после предварительной примерки и отладки подвесной системы 5 подвязывается к потолку испытательного бокса 8 над макетом 1, поддоном 3 и транспортной системой 6. После проведения подготовительных к подрыву операций с макетом 1 и взрывным осколочным элементом 14 с инициатором взрыва 13, выведения и герметизации коммуникаций и подсоединения соответствующих электрических цепей чехол монтируется вокруг макетом 1, герметично соединяется с поддоном и растягивается с помощью подвесной системы, образуя замкнутое герметичное пространство (объем) вокруг макета 1.

В макете 1 устанавливают набор взрывных осколочных элементов 14, состоящего по крайней мере из двух взрывных осколочных элементов, соединенных соответственно с инициаторами взрыва 13, при этом испытания начинают с взрывного осколочного элемента, меньшего по тротиловому эквиваленту по сравнению с последующими, при этом устанавливают дополнительные видеокамеры видеонаблюдения, выполненные во взрывозащитном исполнении, и проводят дополнительную оценку эффективности взрывозащитного исполнения взрывных осколочных элементов и определяют при этом посредством компьютерного моделирования масштабы чрезвычайной ситуации при взрывах на объектах по хранению взрывных осколочных элементов.

Возможен вариант выполнения взрывозащитного элемента 16 (фиг. 2), который устанавливают в потолочной части макета 1, где выполнен проем 15, который закрыт этим взрывозащитным элементом 16, установленным по свободной посадке на трех упругих штырях 19 с листами-упорами 25, один конец каждого из которых жестко вмонтирован в потолок макета 1, а на втором установлен дополнительный элемент 27, выполненный из эластомера, например полиуретана. Дополнительные элементы 27 могут быть выполнены комбинированными (не показано), например упругодемпфирующими в виде упругого элемента, например пружины, заполненной полиуретаном. Между дополнительными элементами 10 и металлическим каркасом с бронированной металлической обшивкой 16 на опорных стержнях 19 установлены втулки 26 из быстроразрушающегося материала, например стекла типа «триплекс».

Встроенная система оповещения о чрезвычайной ситуации с индикатором безопасности состоит из узла крепления «слабого звена» в системе безопасности взрывоопасного объекта, реагирующего на возникновение аварийной ситуации, выполненного, например,

в виде индикатора безопасности 22, закрепленного между фланцами 28 и 29, которые жестко закреплены на верхней части бронированной металлической обшивки 16 (фланец 28) металлического каркаса взрывозащитного элемента, и в верхней части покрытия взрывоопасного объекта у проема 15 (фланец 29), предназначенного для сбрасывания избыточного давления. Индикатор безопасности 22 состоит из датчика, реагирующего на деформацию, например тензорезистора (тензодатчика), выход которого соединен с усилителем сигнала, например тензоусилителем 23, а выход тензоусилителя 23 соединен с входом устройства системы оповещения 24 об аварийной ситуации.

Индикатор безопасности системы предупреждения аварийной ситуации работает следующим образом.

Звено, реагирующее на аварийную ситуацию, выполненное в виде датчика, закрепленного на разрывном элементе, например в виде шпильки с участком меньшего поперечного сечения, испытывает разрывную деформацию, сигнал которой поступает на вход усилителя 23, а выход с усилителя 23 соединяют с входом устройства оповещения 24 об аварийной ситуации.

Устройство взрывозащиты взрывоопасных объектов с системой оповещения о чрезвычайной ситуации работает следующим образом.

При взрыве внутри производственного помещения (на чертеже не показано) происходит подъем панели от воздействия ударной волны и через открытый проем 15 сбрасывается избыточное давление. Сначала взрывозащитный элемент преодолевает сопротивление втулки 26 из стекла, а после ее разрушения - сопротивление дополнительных элементов выполненных комбинированными, например упругодемпфирующими, в виде упругого элемента, например пружины, заполненной полиуретаном.

Возможен вариант (фиг. 3), когда для фиксации предельного положения взрывозащитного элемента 16 к торцам опорных упругих стержней 19 с листами-упорами 25 прикреплен демпфирующий элемент 30, предназначенный для демпфирования ударных нагрузок взрывозащитного элемента 16 о листы-упоры 25.

Демпфирующий элемент 30 прикреплен оппозитно панели и направлен в ее сторону, т.е. навстречу ее движению во время взрыва.

Демпфирующий элемент 30 выполнен в виде объемного тела с внутренней полостью и поверхностями, эквидистантными поверхностям взрывозащитного элемента 16, при этом его внутренняя полость заполнена дисперсной системы воздух-свинец, а свинец выполнен в виде крошки, шарообразной формы.

При взрывном движении вверх панели по упругим стержням 19 она встречает на своем пути демпфирующий элемент 30, при взаимодействии с котором происходит гашение энергии взрыва.

Способ определения эффективности взрывозащиты осуществляют следующим образом.

В испытательном боксе 8 устанавливают макет 1 взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры 7 и 4 видеонаблюдения за процессом развития чрезвычайной ситуации при аварии на взрывоопасном объекте, которую моделируют посредством установки в макете 1 взрывного осколочного элемента 14 с инициатором взрыва 13, при этом видеокамеры 4 и 7 выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок 10 соединяют с блоком 17 и производят запись и регистрацию протекающих процессов изменения технологических параметров в макете 1, после чего регистрируют посредством системы анализаторов 18 записанных осциллограмм протекающих процессов изменения технологических параметров в макете 1 взрывоопасного объекта. В потолочной части макета 1 выполняют проем 15, который закрывают взрывозащитным элементом 16, установленным по свободной посадке на трех упругих штырях 19, один конец каждого из которых жестко фиксируют в потолке макета 1, а на втором крепят горизонтальную перекладину. Между взрывным осколочным элементом 14 и проемом 15 устанавливают трехкоординатный датчик давления 9 во взрывозащитном исполнении, выход которого соединяют с входом блока 17 записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления 9 располагают датчики температуры 20 и влажности 21, контролирующие термовлажностный режим в макете 1, выходы которых также соединяют с входом блока 17 записывающей и регистрирующей аппаратуры. Внутренние поверхности ограждений макета 1 обклеивают тензодатчиками 12 (тензорезисторами), а внешние - тензодатчиками 11, выходы которых также соединяют с входом блока 17 записывающей и регистрирующей аппаратуры, При этом испытания начинают с взрывного осколочного элемента, меньшего по тротиловому эквиваленту, по сравнению с последующими, при этом устанавливают дополнительные видеокамеры видеонаблюдения, выполненные во взрывозащитном исполнении, и проводят дополнительную оценку эффективности взрывозащитного исполнения взрывных осколочных элементов, и определяют при этом посредством компьютерного моделирования масштабы чрезвычайной ситуации при взрывах на объектах по хранению взрывных осколочных элементов. После обработки полученных экспериментальных данных составляют математическую модель, прогнозирующую аварии на взрывоопасном объекте.

Похожие патенты RU2613986C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОСТИ ВЗРЫВОЗАЩИТЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Кочетов Олег Савельевич
RU2578219C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОСТИ ВЗРЫВОЗАЩИТЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2016
  • Кочетов Олег Савельевич
RU2602552C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОСТИ ВЗРЫВОЗАЩИТЫ В ИСПЫТАТЕЛЬНОМ МАКЕТЕ ВЗРЫВООПАСНОГО ОБЪЕКТА 2015
  • Кочетов Олег Савельевич
RU2586689C1
СПОСОБ КОЧЕТОВА ВЗРЫВОЗАЩИТЫ С СИСТЕМОЙ ОПОВЕЩЕНИЯ О ВОЗНИКНОВЕНИИ ЧРЕЗВЫЧАЙНОЙ СИТУАЦИИ 2016
  • Кочетов Олег Савельевич
RU2616090C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОСТИ ВЗРЫВОЗАЩИТЫ С СИСТЕМОЙ ОПОВЕЩЕНИЯ О ВОЗНИКНОВЕНИИ ЧРЕЗВЫЧАЙНОЙ СИТУАЦИИ 2017
  • Кочетов Олег Савельевич
RU2648109C1
СТЕНД ДЛЯ ИСПЫТАНИЙ ВЗРЫВОЗАЩИТНЫХ ЭЛЕМЕНТОВ 2016
  • Кочетов Олег Савельевич
RU2611238C1
СТЕНД ДЛЯ ИССЛЕДОВАНИЙ ПАРАМЕТРОВ ВЗРЫВОЗАЩИТНЫХ УСТРОЙСТВ 2016
  • Кочетов Олег Савельевич
RU2617741C1
СТЕНД ДЛЯ ИССЛЕДОВАНИЙ ПАРАМЕТРОВ ВЗРЫВОЗАЩИТНЫХ УСТРОЙСТВ В ИСПЫТАТЕЛЬНОМ МАКЕТЕ ВЗРЫВООПАСНОГО ОБЪЕКТА 2017
  • Кочетов Олег Савельевич
RU2645361C1
СТЕНД ДЛЯ ИССЛЕДОВАНИЙ ПАРАМЕТРОВ ВЗРЫВОЗАЩИТНЫХ УСТРОЙСТВ В ИСПЫТАТЕЛЬНОМ МАКЕТЕ ВЗРЫВООПАСНОГО ОБЪЕКТА 2017
  • Кочетов Олег Савельевич
RU2652032C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОСТИ ВЗРЫВОЗАЩИТЫ 2014
  • Кочетов Олег Савельевич
RU2548256C1

Иллюстрации к изобретению RU 2 613 986 C1

Реферат патента 2017 года СПОСОБ ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОСТИ ВЗРЫВОЗАЩИТЫ

Изобретение относится к способу определения эффективности взрывозащиты. Способ заключается в том, что используют систему мониторинга с обработкой полученной информации об опасной зоне в испытательном боксе, где устанавливают макет взрывоопасного объекта. По внутреннему и внешнему периметрам макета устанавливают видеокамеры для видеонаблюдения за процессом развития чрезвычайной ситуации. Регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем. Между взрывным осколочным элементом и проемом устанавливают трехкоординатный датчик давления во взрывозащитном исполнении. По обе стороны от датчика давления располагают датчики температуры и влажности. Внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками. Формируют информационную базу данных о развитии чрезвычайной ситуации и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии. Достигается повышение эффективности защиты технологического оборудования от взрывов путем увеличения быстродействия и надежности срабатывания разрывных элементов. 2 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 613 986 C1

1. Способ определения эффективности взрывозащиты, заключающийся в том, что используют систему мониторинга с обработкой полученной информации, в испытательном боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры, при этом видеокамеры выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете, после чего регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем, который закрывают взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко фиксируют в потолке макета, а на втором – крепят горизонтальную перекладину, между взрывным осколочным элементом и проемом устанавливают трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединяют с входом блока записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления располагают датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры, после обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации (ЧС) при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте, отличающийся тем, что в макете устанавливают набор взрывных осколочных элементов состоящий по крайней мере из двух взрывных осколочных элементов, соответственно, с инициаторами взрыва, при этом испытания начинают с взрывного осколочного элемента, меньшего по тротиловому эквиваленту по сравнению с последующими, причем устанавливают дополнительные видеокамеры видеонаблюдения, выполненные во взрывозащитном исполнении, проводят дополнительную оценку эффективности взрывозащитного исполнения взрывных осколочных элементов и определяют посредством компьютерного моделирования масштабы ЧС при взрывах на объектах по хранению взрывных осколочных элементов.

2. Способ определения эффективности взрывозащиты по п.1, отличающийся тем, что на элементах слабого звена в системе безопасности ЧС, например взрывозащитных элементах, на упругих штырях которой установлены втулки из быстроразрушающегося материала, например стекла типа «триплекс», устанавливают систему оповещения о ЧС, при этом между металлическим каркасом с бронированной металлической обшивкой и верхней частью покрытия взрывоопасного объекта у проема, предназначенного для сбрасывания избыточного давления, закрепляют индикатор безопасности, выполняющий функции слабого звена в системе безопасности взрывоопасного объекта и реагирующий на возникновение аварийной ситуации, который выполняют в виде датчика, реагирующего на деформацию, например тензорезистора, выход которого соединяют с усилителем сигнала, например тензоусилителем, а выход тензоусилителя соединяют с входом устройства системы оповещения о ЧС.

3. Способ определения эффективности взрывозащиты по п.1, отличающийся тем, что для фиксации предельного положения взрывозащитного элемента к торцам упругих штырей с листами-упорами прикрепляют демпфирующий элемент, предназначенный для демпфирования ударных нагрузок взрывозащитного элемента о листы-упоры, причем прикрепляют оппозитно взрывозащитному элементу и направляют в сторону взрывозащитного элемента, и выполняют в виде объемного тела с внутренней полостью и поверхностями, эквидистантными поверхностям взрывозащитного элемента, при этом его внутренняя полость заполнена дисперсной системой воздух-свинец, а свинец выполнен в виде крошки шарообразной формы.

Документы, цитированные в отчете о поиске Патент 2017 года RU2613986C1

СПОСОБ ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОСТИ ВЗРЫВОЗАЩИТЫ 2014
  • Кочетов Олег Савельевич
RU2548256C1
СТЕНД ДЛЯ ПОДБОРА ТОЛЩИНЫ ОГРАЖДЕНИЯ, ПРЕДНАЗНАЧЕННОГО ДЛЯ ЗАЩИТЫ ОТ ОСКОЛКОВ ВЗРЫВНОГО ХАРАКТЕРА 2013
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
  • Стареева Мария Михайловна
RU2513879C1
СПОСОБ ПРОЕКТИРОВАНИЯ СТРУКТУРЫ МУЛЬТИПЛЕКСИРОВАНИЯ ДЛЯ ВЫДЕЛЕНИЯ РЕСУРСОВ ДЛЯ ПОДДЕРЖКИ ДЕЙСТВУЮЩИХ СИСТЕМ 2009
  • Чои Дзин Соо
  • Чо Хан Гиу
  • Хан Дзонг Йоунг
  • Чунг Дзае Хоон
RU2454837C2
НОВЫЕ РЕЦЕПТОРЫ ДЛЯ Helicobacter pylori И ИХ ПРИМЕНЕНИЕ 2002
  • Миллер-Подраза Халина
  • Тенеберг Сусанн
  • Онгстрем Йонас
  • Карльссон Карл-Андерс
  • Натунен Яри
RU2306140C2

RU 2 613 986 C1

Авторы

Кочетов Олег Савельевич

Даты

2017-03-22Публикация

2016-05-10Подача