Изобретение относится к области преобразования тепловой энергии в электрическую энергию и может быть использовано в электрогенерирующих элементах энергетической установки.
Известен термоэмиссионный электрогенерирующий канал (ЭГК) активной зоны ядерного реактора [Грязнов Г.М., Пупко В.Я. ТОПАЗ-1 - советская космическая ядерно-энергетическая установка. Природа, 1991, №10, с. 29-36]. ЭГК активной зоны ядерного реактора содержит последовательно соединенные электрогенерирующие элементы, содержащие источники тепла в виде ТВЭЛ, оболочки которых являются катодами, и отделенные от них кольцевым зазором аноды, через изолирующие прокладки соединенные с корпусом ЭГК, охлаждаемым жидкометаллическим теплоносителем, в которых кольцевой зазор между анодом и катодом промывается парами цезия, подаваемыми из цезиевого термостата с одного торца ЭГК и сбрасываемыми в окружающую среду на другом торце ЭГК.
Недостатками такого устройства являются расходная схема циркуляции рабочего тела ЭГК - цезия и относительно низкая эффективность преобразования энергии.
Наиболее близким по технической сущности к заявляемому устройству является термоэмиссионный преобразователь, описанный в патенте США на изобретение №5578886, дата публикации - 18.02.1993 г.
Известное техническое решение содержит обогреваемый катод, отделенный от него зазором, заполненным парами цезия, охлаждаемый анод, причем анод выполнен из закрепленной по периметру фольги, в которой имеется по крайней мере несколько отверстий, через которые в зазор подается пар цезия из цезиевого термостата.
Недостатками этого решения являются относительно большое термическое сопротивление анода и обусловленные им относительно большие перепады температуры на рабочей поверхности анода.
Перед авторами стояла задача устранения указанных недостатков, а именно создание термоэмиссионного преобразователя, обладающего большей эффективностью преобразования за счет стабилизации температуры анода.
Для решения поставленной задачи в термоэмиссионном преобразователе, содержащем узел катода, включающий катод и корпус со средствами обогрева, и узел анода, включающий перфорированный анод, корпус со средствами охлаждения и каналом для пропуска пара цезия к перфорированному аноду, причем узел катода и узел анода размещены на корпусе герметичной камеры, заполненной паром цезия, рабочие поверхности катода и анода размещены внутренней полости герметичной камеры и разделены межэлектродным зазором, предлагается:
- анод выполнить в виде пластины;
- на каждой поверхности пластины анода выполнить параллельные продольные пазы, общие направления пазов на сторонах пластины не параллельны, а сумма их глубин превышает толщину пластины.
В частных случаях предлагается:
- пазы выполнить треугольного профиля, пересекающиеся под прямым углом;
- глубину пазов на рабочей поверхности пластины анода выбрать от 0,1 до 0,5 глубины пазов на внутренней поверхности пластины анода;
- пластину анода выполнить из сплавов на основе меди.
Технический результат изобретения - повышение эффективности преобразования энергии следствие приближения параметров проведения термоэмиссионного процесса к оптимальным.
Сущность изобретения поясняется фигурами, где на фиг. 1 представлено схематическое изображение устройства, на фиг. 2 - фронтальный вид анода, фиг. 3 - вид на анод слева, на фиг. 4 - вид на анод сверху.
На фиг. 1-4 приняты следующие обозначения: 1 - анод, 2 - верхние продольные пазы, 3 - гермоввод, 4 - канал подвода пара цезия, 5 - каналы воздушного охлаждения, 6 - катод, 7 - корпус герметичной камеры, 8 - корпус узла анода, 9 - корпус узла катода, 10 - нагреватель катода, 11 - нижние продольные пазы, 12 - отверстия, 13 - патрубок отвода пара цезия, 14 - сильфон, 15 - форкамера.
Термоэмиссионный преобразователь содержит узел катода, включающий катод 6, корпус узла катода 9 и нагреватель катода 10, и узел анода, включающий анод 1, канал подвода пара цезия 4, каналы воздушного охлаждения 5, корпус узла анода 9 и форкамеру 15, размещенные на герметичной камере, заполненном паром цезия, включающей гермоввод 3, корпус герметичной камеры 7, патрубок отвода пара цезия 13 и сильфон 14. Канал подвода пара цезия 4 открывается в форкамеру 15 - полость под пластиной анода 1. Герметичная камера снабжена гермовводом 3 для разрыва электрической цепи между узлами анода и катода и сильфоном 14 для взаимной ориентации рабочих поверхностей собственно анода 1 и катода 6. Рабочие поверхности анода 1 и катода 6 фиксируются параллельно друг другу с межэлектродным зазором в пределах 0.1-1 мм. В верхней части корпус герметичной камеры 7 снабжен патрубком для отвода пара цезия 13. На верхней поверхности пластины анода 1 выполнены верхние продольные пазы 2, на нижней - нижние продольные пазы 11. Направления пазов 2 и 11 не параллельны, а суммарная глубина превышает толщину пластины, вследствие чего в пластине анода 1 формируется массив отверстий 12 для пропуска пара цезия из форкамеры 15 в межэлектродный зазор.
В частных случаях исполнения термоэмиссионного преобразователя предлагается:
- во-первых, верхние продольные пазы 2 и нижние продольные пазы 11 выполнять треугольного профиля и пересекающимися под прямым углом, что соответствует максимальному раскрытию проходного сечения для пропуска пара цезия;
- во-вторых, глубину пазов на рабочей поверхности пластины анода выбирать от 0,1 до 0,5 глубины пазов на внутренней поверхности пластины анода, что увеличивает долю абсорбирующей электроны поверхности анода;
- в-третьих, пластину анода выполнить из сплавов на основе меди, что снижает ее термическое сопротивление и выравнивает температуру рабочей поверхности анода.
Устройство работает следующим образом.
Рабочий процесс осуществляют разогревом катода 6 нагревателем катода 10 до температуры в диапазоне 1100-1300°С в условиях отвода тепла от анода 1 средствами его охлаждения (например, обдувом воздуха, подводимого по каналам воздушного охлаждения 5) при температуре 250-500°С. Внутреннее пространство герметичной камеры термоэмиссионного преобразователя заполняется паром цезия через канал подвода пара цезия 4, форкамеру 15 и систему отверстий 12 в пластине анода 1, образованную пересечением нижних продольных пазов 11 и верхних продольных пазов 2. Устойчивый поток пара цезия в межэлектродном зазоре формируется вследствие отвода пара цезия из герметичной камеры термоэмиссионного преобразователя через патрубок отвода пара цезия 13. В результате термоэмиссионный процесс протекает в условиях вдува пара цезия в межэлектродный зазор через отверстия 12 в пластине анода 1, что, согласно экспериментальным данным, ведет к существенному увеличению эффективности термоэмиссионного преобразования.
Пример конкретного исполнения устройства.
Корпус герметичной камеры 7 термоэмиссионного преобразователя и сильфон 14 выполнены из нержавеющей стали 12Х18Н10Т. Наличие гибкого элемента - сильфона 14 позволяет выставить рабочие поверхности анода 1 и катода 6 параллельно друг другу с зазором 0,3-0,8 мм, а гермоввода 3 - разорвать электрическую цепь между узлами катода и анода. Анод 1 изготовлен из бескислородной меди марки МОб с покрытием слоем хрома толщиной 15 мкм со стороны катода 6, катод 6 изготовлен из молибдена с нанесенным покрытием из платины толщиной 5 мкм. Толщина пластины анода 1 составляет 1,8 мм. Верхние продольные пазы 2 выполнены треугольного профиля с углом при вершине 56 глубиной 0,4 мм, нижние продольные пазы 11 выполнены также треугольной формы с углом при вершине 37°, их глубина 1,5 мм. Как верхние, так и нижние пазы выполнены с шагом 1 мм. Направления верхних и нижних пазов взаимно перпендикулярны. Пересечение пазов 2 и 11 формирует решетку отверстий 12 с размером около 0,1 мм, отстоящих друг от друга на 1 мм. Глубина верхних продольных пазов 2 выбрана меньше глубины нижних продольных пазов 11 с целью сохранения рабочей (плоскопараллельной относительно катода 6) поверхности анода 1. Материал изолирующей вставки гермоввода 3 - оксид алюминия.
При выполнении анода из перфорированной никелевой фольги, как это имело место в прототипе, оценки величины перегревы центральной части анода вследствие затрудненного теплоотвода по фольге к периферийной части анода составляют величину до 200 К, в то время как при выполнении анода в соответствии с заявляемым решением неизотермичность рабочей поверхности анода не превышает 10 К, что позволяет провести термоэмиссионный процесс в режиме, близком к оптимальному. В соответствии с экспериментальными данными [Ярыгин В.И. и др. «Термоэмиссионный преобразователь с высокими выходными электрическими характеристиками на основе металл-кислородной системы на коллекторе». - Атомная энергия, 2000, т. 89, вып. 1, с. 39-47], эффективность термоэмиссионного преобразования энергии в значительной степени определяется эффективной работой выхода анода, которая существенно зависит от его температуры. При отклонении температуры анода от оптимального значения на 100 К эффективная работа выхода увеличивается примерно на 0,1 эВ, что приводит к уменьшению эффективности преобразования энергии на 25%.
Использование изобретения позволяет увеличить эффективность преобразования тепловой энергии в электрическую вплоть до 20%.
название | год | авторы | номер документа |
---|---|---|---|
ТЕРМОЭМИССИОННЫЙ ПРЕОБРАЗОВАТЕЛЬ | 2009 |
|
RU2390872C1 |
ЭЛЕКТРОГЕНЕРИРУЮЩИЙ КАНАЛ РЕАКТОРА ТЕРМОЭМИССИОННОГО ПРЕОБРАЗОВАТЕЛЯ | 1992 |
|
RU2063089C1 |
МНОГОЭЛЕМЕНТНЫЙ ЭЛЕКТРОГЕНЕРИРУЮЩИЙ КАНАЛ | 1993 |
|
RU2102813C1 |
Термоэмиссионный преобразователь для термоэмиссионной тепловой защиты кромки малого радиуса закругления крыла высокоскоростного летательного аппарата | 2019 |
|
RU2704106C1 |
Реактор-преобразователь | 2019 |
|
RU2724919C1 |
Термоэмиссионный преобразователь с пассивным охлаждением для бортового источника электроэнергии высокоскоростного летательного аппарата с прямоточным воздушно-реактивным двигателем | 2019 |
|
RU2703272C1 |
ЭЛЕКТРОГЕНЕРИРУЮЩИЙ ТЕРМОЭМИССИОННЫЙ КАНАЛ ПЕРЕМЕННОГО ТОКА | 1996 |
|
RU2100869C1 |
ТЕРМОЭМИССИОННЫЙ ЭЛЕКТРОГЕНЕРИРУЮЩИЙ МОДУЛЬ ДЛЯ АКТИВНОЙ ЗОНЫ ЯДЕРНОГО РЕАКТОРА С ВЫНЕСЕННОЙ ТЕРМОЭМИССИОННОЙ СИСТЕМОЙ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ (ВАРИАНТЫ) | 2000 |
|
RU2187156C2 |
ТЕРМОЭМИССИОННЫЙ ЭЛЕКТРОГЕНЕРИРУЮЩИЙ МОДУЛЬ АКТИВНОЙ ЗОНЫ ЯДЕРНОГО РЕАКТОРА С ПРЯМЫМ ПРЕОБРАЗОВАНИЕМ ЭНЕРГИИ | 2007 |
|
RU2347291C1 |
ТЕРМОЭМИССИОННЫЙ РЕАКТОР-ПРЕОБРАЗОВАТЕЛЬ | 1992 |
|
RU2030018C1 |
Термоэмиссионный преобразователь относится к энергетике. Термоэмиссионный преобразователь содержит узел катода, включающий катод (6) и корпус со средствами нагрева (10), и узел анода, включающий перфорированный анод (1), корпус со средствами охлаждения (5) и каналами для пропуска пара цезия (4) к перфорированному аноду, размещенные на корпусе герметичной камеры, заполненной паром цезия. Рабочие поверхности катода (6) и анода (1) размещены во внутренней полости герметичной камеры и разделены межэлектродным зазором. Анод (1) выполнен в виде пластины, на каждой поверхности которой выполнены параллельные продольные пазы. Общие направления пазов на сторонах пластины не параллельны, а сумма их глубин превышает толщину пластины. Технический результат - повышение эффективности преобразования тепловой энергии в электрическую. 3 з.п. ф-лы, 4 ил.
1. Термоэмиссионный преобразователь, содержащий узел катода, включающий катод и корпус со средствами обогрева, и узел анода, включающий перфорированный анод, корпус со средствами охлаждения и каналом для пропуска пара цезия к перфорированному аноду, причем узел катода и узел анода размещены на корпусе герметичной камеры, заполненной паром цезия, рабочие поверхности катода и анода размещены во внутренней полости герметичной камеры и разделены межэлектродным зазором, отличающийся тем, что анод выполнен в виде пластины, на каждой поверхности которой выполнены параллельные продольные пазы, при этом общие направления пазов на сторонах пластины не параллельны, а сумма их глубин превышает толщину пластины.
2. Термоэмиссионный преобразователь по п. 1, отличающийся тем, что пазы выполнены треугольного профиля и пересекаются под прямым углом.
3. Термоэмиссионный преобразователь по п. 1, отличающийся тем, что глубина пазов на рабочей поверхности пластины анода составляет от 0,1 до 0,5 глубины пазов на внутренней поверхности пластины анода.
4. Термоэмиссионный преобразователь по п. 1, отличающийся тем, что пластина анода выполнена из сплавов на основе меди.
US 5578886A, 26.11.1996 | |||
ТЕРМОЭМИССИОННЫЙ ПРЕОБРАЗОВАТЕЛЬ | 2009 |
|
RU2390872C1 |
US 5994638A, 30.11.1999 | |||
KR 200300478757A1, 18.06.2003. |
Авторы
Даты
2017-02-28—Публикация
2015-10-02—Подача