Техническое решение относится к разработкам в области охранных и противопожарных систем и может применяться в авиастроении, кораблестроении и иных видах отраслях промышленности.
Известен датчик дыма [1], взятый в качестве аналога. Указанный датчик при достаточно низкой чувствительности имеет сложную конструкцию. Кроме того, наличие ряда отражателей как со сферической, так и с асферической поверхностями существенно затрудняет юстировку прибора, а также снижает его эксплуатационные характеристики - устойчивость к перепадам температуры, давления, влажности.
Наиболее близким к изобретению по технической сущности является датчик дыма с самоконтролем [2], который содержит два оптических приемных канала - эталонный и измерительный, а также канал излучателя (на основе светодиода), и состоит из корпуса, внутри которого расположены светодиод, призма для отвода излучения в эталонный канал, фотодиодный приемник эталонного канала, формирующая оптическая система, подстраиваемый отражатель, оптически с ним сопряженный через приемный объектив измерительный фотодиодный приемник и электронная схема обработки и контроля.
Наличие дыма в камере детектируется по разности сигналов эталонного и измерительного приемного каналов. При этом перед выходом на рабочий режим сигналы в приемных каналах выравниваются электронным способом. Такой принцип работы требует высокой стабильности излучателя, вследствие неравноплечности приемных каналов влияние нестабильности потока излучения светодиода на сигналы в каналах будет разным, что неизбежно приведет к возникновению сигнала рассогласования между ними и, как следствие, к появлению ложной тревоги. Для обеспечения неизменности характеристик излучения светодиода в процессе эксплуатации в приборе предусмотрена сложная система термостабилизации, наличие которой ведет к существенному повышению как стоимости прибора, так и его энергопотребления.
Важным аспектом является следующий факт. Стабилизация эталонного сигнала осуществляется в некотором диапазоне dФ. Как правило, чувствительность датчика не может быть меньшей, чем dФ.
Указанные выше недостатки можно устранить тем, что в оптическом датчике дыма, содержащем источник излучения с блоком питания и отражатель, оптически сопряженный с источником излучения, эталонный приемный канал, оптически сопряженный с источником излучения, выход которого соединен с входом блока питания, измерительный приемный канал, оптически сопряженный с источником излучения через отражатель, наличие задымления определяется в измерительном канале по превышению пороговой величины Δ, разницей между значением текущего уровня сигнала Фт измерительного канала и значением динамического уровня сигнала Ф0, где
*Ф0 - начальный уровень сигнала;
Фi - мгновенное значение сигнала;
i - номер выборки;
n - число выборок для усреднения динамического уровня сигнала;
k - число выборок для усреднения текущего уровня сигнала.
Причем k<<n.
Динамический уровень сигнала характеризует в системе эталонный сигнал. Введение усреднения по выборке из n измерений позволяет исключить случайные выбросы эталонного сигнала при принятии решения. Текущий уровень сигнала также усредняется. Его выборка - k измерений, причем k<<n.
При таком алгоритме обработки значение пороговой величины Δ может быть в идеальном случае сколь угодно малым. Оно может быть ограничено только собственными внутренними шумами электронной системы обработки. Величина dФ, определяющая диапазон стабилизации эталонного сигнала, не является критичной, т.е. Δ может быть меньше значения dФ. Поэтому предлагаемая совокупность отличительных признаков позволяет достичь двух положительных эффектов, во-первых, повысить чувствительность датчика дыма (т.е. позволяет обеспечить Δ<<dФ), во-вторых, снизать вероятность ложного срабатывания прибора за счет случайных выбросов как эталонного, так и текущего сигналов (введением усреднения эталонного и текущего сигналов).
На чертеже представлена схема оптического датчика дыма.
В нем используется схема с двумя приемными каналами, один из которых является измерительным. При этом в передающем канале в качестве излучателя 1 применяется светодиод, излучение которого проходит через диафрагму 2 и дополнительно коллимируется оптической системой 3. Сфокусированное излучение светодиода попадает на регулируемый отражатель 4, задающий начальное значение потока, попадающего в измерительный канал. В свою очередь приемный измерительный канал включает в себя оптическую систему 5 и приемник излучения 6 (фотодиод). При попадании дыма в камеру на его частицах происходит дополнительное рассеяние излучения светодиода, и поток, попадающий в измерительный канал, возрастает, что и может быть зафиксировано по увеличению сигнала с фотодиодного приемника излучения блоком обработки и контроля 7.
Второй приемный канал является эталонным (опорным) каналом, который выполнен на основе фотодиода 8 и оптически связан со светодиодом за счет его широкой диаграммы направленности излучения, а также электрически связан через блок обработки и контроля 7 с излучателем. Его задачей является стабилизация излучения светодиода, которая достигается электронным способом - в датчике предусмотрено управление током через светодиод. Поэтому любое изменение излучательных характеристик светодиода как вследствие внешних воздействий (температура, давление и т.д.), так и при деградации собственно кристалла излучателя, практически мгновенно компенсируется повышением или снижением тока через него. Кроме того, излучение светодиода модулируется в килогерцовом диапазоне - на эту же частоту настроены усилительные тракты с высокой добротностью обоих измерительных каналов, расположенные в блоке обработки и контроля 7, что позволяет отстраниться от всех внешних фоновых засветок как естественного, так и искусственного происхождения.
Источники информации
1. Патент РФ 2037883, МПК G08B 17/10, опубл. 19.06.1995.
2. Патент США US 4870394 от 26.09.1989, МПК G08B 17/10, НКИ 340/630.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПОКАЗАТЕЛЯ СВЕТОВОЗВРАЩЕНИЯ ОПТИКО-ЭЛЕКТРОННЫХ ПРИБОРОВ | 2002 |
|
RU2202814C1 |
УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ ОПТИЧЕСКИХ СВЕТОВОЗВРАЩАЮЩИХ СИСТЕМ | 2003 |
|
RU2230346C1 |
ОПТИКО-ЭЛЕКТРОННОЕ УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ СИСТЕМ СКРЫТОГО ВИДЕОНАБЛЮДЕНИЯ | 2006 |
|
RU2308746C1 |
СПОСОБ НОЧНОГО И/ИЛИ ДНЕВНОГО НАБЛЮДЕНИЯ УДАЛЕННОГО ОБЪЕКТА С СИНХРОННОЙ ФАЗОВОЙ МАНИПУЛЯЦИЕЙ ЛАЗЕРНЫМИ ИМПУЛЬСАМИ ПОДСВЕТА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2004 |
|
RU2269804C1 |
ОПТИКО-ЭЛЕКТРОННЫЙ ПРИБОР ДЛЯ ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ СИСТЕМ СКРЫТОГО ВИДЕОНАБЛЮДЕНИЯ | 2002 |
|
RU2191417C1 |
Способ и устройство дифференциального определения радиуса кривизны крупногабаритных оптических деталей с использованием датчика волнового фронта | 2017 |
|
RU2667323C1 |
ОДНОКАНАЛЬНОЕ УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ СВЕТОВОЗВРАЩАЮЩИХ ОПТИЧЕСКИХ СИСТЕМ И ОПРЕДЕЛЕНИЯ ДАЛЬНОСТИ ДО НИХ | 2008 |
|
RU2400770C1 |
Способ определения радиуса кривизны вогнутой оптической сферической поверхности с центральным осевым отверстием методом оптической дальнометрии | 2017 |
|
RU2695085C2 |
Способ восстановления формы асферической поверхности оптической детали по параметрам отраженного волнового фронта, получаемым приборами с датчиками волнового фронта (ДВФ) | 2019 |
|
RU2715434C1 |
Устройство с разнесенными ветвями для измерения радиусов кривизн вогнутых оптических деталей | 2019 |
|
RU2710976C1 |
Предложен датчик дыма. Он содержит источник излучения с блоком питания и отражатель, оптически сопряженный с источником излучения, опорный приемный канал, оптически сопряженный с источником излучения, выход которого соединен с входом блока питания, измерительный приемный канал, оптически сопряженный с источником излучения через отражатель. При этом наличие задымления определяется в измерительном канале по превышению пороговой величины Δ, разницей между значением текущего уровня сигнала Фт измерительного канала и значением динамического уровня сигнала Ф0, где *Ф0 - начальный уровень сигнала; Фi - мгновенное значение сигнала; i - номер выборки; n - число выборок для усреднения динамического уровня сигнала; k - число выборок для усреднения текущего уровня сигнала. 1 ил.
Датчик дыма, содержащий источник излучения с блоком питания и отражатель, оптически сопряженный с источником излучения, опорный приемный канал, оптически сопряженный с источником излучения, выход которого соединен с входом блока питания, измерительный приемный канал, оптически сопряженный с источником излучения через отражатель, отличающийся тем, что наличие задымления определяется в измерительном канале по превышению пороговой величины Δ, разницей между значением текущего уровня сигнала Фт измерительного канала и значением динамического уровня сигнала Ф0, где
*Ф0 - начальный уровень сигнала;
Фi - мгновенное значение сигнала;
i - номер выборки;
n - число выборок для усреднения динамического уровня сигнала;
k - число выборок для усреднения текущего уровня сигнала.
US 4870394 A1, 26.09.1989 | |||
Датчик дыма | 1974 |
|
SU484544A1 |
US 4185278 A1, 22.01.1980 | |||
Способ контроля наличия аэрозольных частиц в контролируемой среде | 1985 |
|
SU1317466A1 |
Авторы
Даты
2017-03-15—Публикация
2015-02-18—Подача