УСТРОЙСТВО ОБРАБОТКИ ЖИДКОГО УГЛЕВОДОРОДНОГО ТОПЛИВА ДЛЯ ИЗМЕНЕНИЯ ЕГО ГРУППОВОГО И ФРАКЦИОННОГО СОСТАВА ПОД ВОЗДЕЙСТВИЕМ ЭЛЕКТРИЧЕСКОГО ПОЛЯ (ВАРИАНТЫ) Российский патент 2017 года по МПК F02M27/04 

Описание патента на изобретение RU2614562C2

Изобретение относится к устройствам обработки жидкого углеводородного топлива электрическими средствами для получения жидкого углеводородного топлива улучшенного качества и подготовки его к процессу сжигания в различных энергетических установках с целью уменьшения его расхода и улучшения экологических показателей энергетических установок.

Известен способ электрической обработки жидкого топлива и активатор для жидкого топлива (патент RU №2032107, опубликован 27.03.1995).

Согласно способу жидкое топливо перед диспергированием активируют в электрическом поле импульсного тока частотой 250-300 Гц и напряжением 20-25 кВ и разделяют на потоки противоположной полярности.

Активатор для жидкого топлива содержит корпус с входным и выходным патрубками, электроды, размещенные внутри активатора и подключенные к источнику тока высокого напряжения, и полупроницаемую мембрану для разделения заряженных потоков.

Недостатками известного способа и активатора являются: - разделение обрабатываемого топлива на два разнополярных потока не обеспечивает полной обработки всего потока топлива, так как после разделения на фракции на сжигание направляется только часть обработанного топлива:

- использование электрического поля импульсного тока частотой 250-300 Гц и напряжением 20-25 кВ снижает безопасность эксплуатации используемого оборудования.

Наиболее близким по технической сущности и достигаемому результату к заявляемому устройству является способ обработки топлива, заключающийся в пропускании потока топлива через участок топливопровода, в котором установлены электроды, на которые подается переменное напряжение с переменной частотой. Между разнополярными электродами в камере обработки размещен слой диэлектрического материала. При этом параметры электромагнитного воздействия на топливо устанавливаются в соответствии с установленным экспериментально соотношением и определенными числовыми значениями (патент RU №2038506, опубликован 27.06.1995).

К недостатку известного способа следует отнести следующее. За счет дополнительного энергетического потенциала под действием электромагнитного поля топливо дополнительно энергетизируется и дробится на мелкие фракции. При этом за счет более мелких фракций топлива происходит более полное его сгорание без изменения структуры молекулярного состава топлива и повышения теплоты его сгорания.

Наиболее близким по технической сущности к заявляемому устройству является устройство для обработки топлива, содержащее корпус в виде камеры с входным и выходным отверстиями, снабженный, по крайней мере, двумя разнополярными электродами для воздействия электрическим постоянным полем на поток топлива в камере обработки, подключенными к источнику питания, при этом корпус является одним из электродов, а другой внутренний электрод, размещенный в камере обработки, расположен коаксиально корпусу (патент RU №2156879, опубликован 27.09.2000 - прототип).

Недостатками известного устройства являются:

- применение сложной и дорогостоящей технологии изготовления диэлектрического материала толщиной 4×10-6 до 0,5×10-3;

- ограниченность применения из-за низкой температуры плавления диэлектрического материала;

- недостаточная механическая устойчивость к механическим примесям и абразивам, присутствующим в топливе;

- воздействие постоянным электрическим полем на поток топлива и размещение диэлектрического материала между разнополярными электродами не обеспечивает изменения структуры молекулярного состава топлива и повышения теплоты его сгорания.

Технической задачей изобретения является обработка жидкого углеводородного топлива для изменения его группового и фракционного состава, позволяющая улучшить качество жидкого углеводородного топлива, повысить его теплотворность и полноту сгорания.

Задача решена путем создания устройства обработки жидкого углеводородного топлива для изменения его группового и фракционного состава воздействием на него переменным электрическим полем. Устройство, в котором топливо размещается между электродами, на которые подают переменный электрический потенциал, в котором частота переменного электрического поля, физические характеристики топлива и геометрические размеры устройства для его обработки электрическим полем установлены в соответствии с выражением:

fэф=βEвозбV/U2εaπℓt

где fэф - частота колебания электрического поля - 1/с,

β=(w/k)NАвρ/M - глубина модификации топлива - 1/м3,

w - скорость цепной химической реакции - с-1,

k - скорость гибели радикалов в реакциях обрыва цепи - с-1,

NАв - число Авогадро - моль-1,

ρ - плотность топлива - кг/м3,

М - молярная масса топлива - кг/кмоль,

Евозб - энергия возбуждения колебательных и электронных уровней молекул - Дж,

V - объем топлива в устройстве, м3,

U - амплитуда напряжения на электродах устройства обработки - В,

εа=εε0 - абсолютная диэлектрическая проницаемость топлива, 1,

ℓ - длина электродов камеры обработки - м,

t - время обработки топлива - с.

В таком устройстве обработки жидкого углеводородного топлива для изменения его группового и фракционного состава под воздействием переменного электрического поля, улучшающего его качество, повышающего теплотворность и полноту сгорания, предпочтительно соблюдать следующие соотношения:

- массу топлива в зоне обработки устанавливают в соответствии с соотношением

m=(Vк-Vэ)×ρ,

где m - масса топлива в зоне обработки – кг,

Vк - объем зоны обработки – м3,

Vэ - суммарный объем электродов, размещенных внутри зоны обработки - м3,

ρ - плотность топлива - кг/м3;

- сечение входного отверстия Sвх и площадь сечения камеры обработки Sк находятся в соотношении Sвх≤Sк.

В одном частном случае обработку топлива осуществляют в его неподвижном состоянии относительно электродов. В другом частном случае обработку топлива осуществляют в процессе его движения через зону обработки.

Устройство (фиг. 1 и 2) состоит из корпуса 1, имеющего входное 2 и выходное 3 отверстия с установленными на них соответственно входным 7 и выходным 8 патрубками; в камере обработки топлива 5 установлены одна и более пар электродов 4, которые подключены к разным полюсам источника переменного напряжения с изменяемыми параметрами (на схеме не показан), которые фиксируются в статическом положении с помощью изолирующих вставок 6 и 9; изолирующие вставки 6 переменной длины позволяют изменять расстояние между электродами 4.

В одном частном случае корпус 1 изготовлен из трубы круглого сечения (фиг. 1), в другом - трапециевидного сечения (фиг. 2).

Электроды 4 изготовлены в разных вариантах и представляют собой пластину с множеством отверстий или сетку с различными размерами отверстий или ячеек соответственно, которые имеют в зависимости от формы корпуса и ориентации расположения электродов внутри корпуса круглую или трапециевидную форму, которые располагаются поперек или вдоль течения струи топлива.

На фиг. 1 представлен продольный разрез и поперечное сечение устройства обработки топлива для изменения его группового и фракционного состава под воздействием электрического поля, улучшающего качество топлива, повышающего теплоту и полноту его сгорания, в котором корпус цилиндрической формы, а электроды, выполненные в виде дисков, расположены поперек потока топлива.

На фиг. 2 представлен продольный разрез устройства, в котором корпус и электроды трапециевидной формы и электроды расположены вдоль потока топлива.

Топливо через входное отверстие 2 входного патрубка 7 подается в камеру обработки 5 и делится на несколько потоков между корпусом 1 и электродами 4. Под воздействием переменного электрического поля, созданного между электродами 4, происходит обработка и улучшение качества топлива, обусловленное изменением его структуры, фракционного и группового состава. Воздействие переменного электрического поля на молекулы углеводородов приводит к изменению структуры топлива, уменьшению вязкости и коэффициента поверхностного натяжения, улучшению смесеобразования и сгорания топлива, повышению теплоты и полноты его сгорания. Реструктуризированное топливо выходит из камеры обработки 5 через выходное отверстие 3 выходного патрубка 8. Наличие изолирующих вставок 9 позволяет центрировать электроды 4 по продольной оси камеры обработки 5 и устанавливать необходимое расстояние между корпусом 1 и электродами 4. Кроме того, введение изолирующих вставок переменной длины 6 позволяет изменять расстояние между электродами 4, что, в свою очередь, позволяет изменять напряженность электрического поля и мощность источника питания в зависимости от вида применяемого жидкого углеводородного топлива.

Технические результаты заявляемого изобретения подтверждаются данными лабораторных исследований топлива, подвергнутого воздействию переменного электрического поля, а также результатами стендовых испытаний различных ДВС в сертифицированной лаборатории Санкт-Петербургского политехнического университета, в ходе которых зарегистрировано уменьшение удельных расходов топлива при той же мощности ДВС и уменьшение содержания в отработавших газах СО, СН и твердых частиц, а также индикаторными диаграммами ДВС, работающих на обработанном топливе.

При теплотехнических измерениях на котельных агрегатах, работающих на тяжелых сортах углеводородного топлива, было зарегистрировано уменьшение удельного расхода топлива при постоянной теплопроизводительности котельной установки, а также уменьшение выбросов вредных веществ в отходящих газах.

Результаты научных экспериментальных исследований опубликованы в следующих изданиях:

1. Мурамович В.Г., Анисимов П.Ф., Петухов В.В., Лямин П.Л., Туев С.В. Повышение экономических и экологических характеристик судовых двигателей внутреннего сгорания. // Журнал «Судостроение» 2012, №1, с. 38-41.

2. Мурамович В.Г., Анисимов П.Ф., Туев С.В. Молекулярная модификация неподвижного углеродного топлива электрическим полем в большом объеме. / Труды Международной научно-практической конференции ИПТ РАН «Транспорт России: проблемы и перспективы - 2012», Санкт-Петербург, 2012, с. 140-142.

3. Мурамович В.Г., Анисимов П.Ф., Туев С.В. Молекулярная модификация моторного топлива и ее влияние на характеристики и ресурс ДВС. // Справочник. Инженерный журнал. 2013, №4, с. 15-19.

Похожие патенты RU2614562C2

название год авторы номер документа
УСТРОЙСТВО МАГНИТОАКУСТИЧЕСКОЙ ОБРАБОТКИ ЖИДКОГО УГЛЕВОДОРОДНОГО ТОПЛИВА 2013
  • Соболев Сергей Владимирович
  • Володина Оксана Владимировна
RU2546886C1
Способ электрической обработки топлива 2019
  • Ивченко Сергей Викторович
  • Шумовский Владимир Валерьевич
RU2719762C1
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ЖИДКОГО И ГАЗООБРАЗНОГО УГЛЕВОДОРОДНОГО ТОПЛИВА 2014
  • Мамченко Виктор Михайлович
  • Малюхин Александр Сергеевич
  • Малюхин Дмитрий Михайлович
RU2591746C2
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ СГОРАНИЯ УГЛЕВОДОРОДНОГО ТОПЛИВА 2013
  • Нагорный Владимир Степанович
  • Колодяжный Дмитрий Юрьевич
  • Марчуков Евгений Ювенальевич
  • Федоров Сергей Андреевич
  • Пщелко Николай Сергеевич
RU2562505C2
СПОСОБ ИЗМЕРЕНИЯ ПЛОТНОСТИ ОБЪЕМНОГО ЗАРЯДА И ПОСТОЯННОЙ ВРЕМЕНИ ЕГО РЕЛАКСАЦИИ В ПОТОКЕ ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ 2012
  • Аксельрод Валентин Самуилович
RU2510028C1
СПОСОБ ПОДГОТОВКИ УГЛЕВОДОРОДНЫХ И СМЕСЕВЫХ АЛЬТЕРНАТИВНЫХ ТОПЛИВ К ПРИМЕНЕНИЮ И БЛОЧНО-МОДУЛЬНАЯ УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Литвиненко Анатолий Николаевич
  • Ботоногов Евгений Валерьевич
  • Литвиненко Алексей Анатольевич
  • Литвиненко Николай Анатольевич
  • Искандаров Ренат Шаукатович
RU2373421C1
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ЖИДКОГО УГЛЕВОДОРОДНОГО ТОПЛИВА (ВАРИАНТЫ) 2007
  • Туев Сергей Владимирович
  • Мамченко Виктор Михайлович
  • Багрянцев Алексей Валерьевич
RU2330984C1
СПОСОБ ЭЛЕКТРИЧЕСКОЙ ОБРАБОТКИ И ПРИМЕНЕНИЯ НИЗКООКТАНОВОГО ТОПЛИВА В ДВИГАТЕЛЕ ВНУТРЕННЕГО СГОРАНИЯ И СИСТЕМА ТОПЛИВОПОДГОТОВКИ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Литвиненко Анатолий Николаевич
  • Артёмов Вячеслав Вячеславович
  • Литвиненко Алексей Анатольевич
  • Литвиненко Николай Анатольевич
  • Гафуров Денис Рамисович
RU2373420C1
СПОСОБ МОДИФИКАЦИИ ЖИДКОГО УГЛЕВОДОРОДНОГО ТОПЛИВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Ляпин Андрей Григоревич
  • Мамедов Самир Энвер Оглы
  • Смородин Анатолий Иванович
  • Ярошенко Владимир Серафимович
RU2380396C2
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ЖИДКОСТИ 2008
  • Бородин Валентин Иванович
  • Ержигитов Сергей Жумаевич
  • Логинов Валерий Иванович
  • Болычев Виктор Сергеевич
  • Мингалев Эдуард Прокопьевич
  • Хрущёв Анатолий Дмитриевич
RU2403210C2

Иллюстрации к изобретению RU 2 614 562 C2

Реферат патента 2017 года УСТРОЙСТВО ОБРАБОТКИ ЖИДКОГО УГЛЕВОДОРОДНОГО ТОПЛИВА ДЛЯ ИЗМЕНЕНИЯ ЕГО ГРУППОВОГО И ФРАКЦИОННОГО СОСТАВА ПОД ВОЗДЕЙСТВИЕМ ЭЛЕКТРИЧЕСКОГО ПОЛЯ (ВАРИАНТЫ)

Изобретение относится к устройствам для подготовки топлива перед сжиганием. Предложенное устройство содержит корпус 1 с расположенными в нем электродами 4, подключенными к источнику переменного напряжения. Частота переменного электрического поля, физические характеристики топлива и геометрические размеры устройства обработки устанавливаются в соответствии с выражением:

fэф=βЕвозбV/U2εаπℓt,

где: fэф - частота колебания электрического поля - 1/с, β=(w/k)NАвρ/М - глубина модификации топлива - 1/м3, w - скорость цепной химической реакции - с-1, k - скорость гибели радикалов в реакциях обрыва цепи - с-1, NАв - число Авогадро - моль-1, ρ - плотность топлива - кг/м3, V - объем обрабатываемого топлива - м3, М - молярная масса топлива - кг/кмоль, U - амплитуда напряжения на электродах устройства обработки - В, εа=εε0 - абсолютная диэлектрическая проницаемость топлива, 1, ℓ - длина электродов камеры обработки - м, t - время обработки топлива - с. С помощью предложенного устройства достигается улучшение качества топлива, повышение теплоты и полноты его сгорания. 6 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 614 562 C2

1. Устройство для обработки жидкого углеводородного топлива электрическими средствами для получения жидкого углеводородного топлива улучшенного качества и подготовки его к процессу сжигания в различных энергетических установках, состоящее из корпуса с входным и выходным патрубками, камеры обработки топлива и электродов, которые подключены к источнику электрического напряжения, отличающееся тем, что принцип работы устройства заключается в размещении топлива между электродами, на которые подан переменный электрический потенциал, частота переменного электрического поля которого, физические характеристики топлива и геометрические размеры устройства устанавливаются в соответствии с выражением

fэф=βEвозбV/U2εaπℓt,

где fэф - частота колебания электрического поля - 1/с,

β=(w/k)NАвρ/M - глубина модификации топлива - 1/м3,

w - скорость цепной химической реакции - с-1,

k - скорость гибели радикалов в реакциях обрыва цепи - с-1,

NАв - число Авогадро - моль-1,

ρ - плотность топлива - кг/м3,

М - молярная масса топлива - кг/кмоль,

Евозб - энергия возбуждения электронных или колебательных уровней молекул - Дж,

V - объем обрабатываемого топлива - м3,

U - амплитуда напряжения на электродах устройства обработки - В,

εа=εε0 - абсолютная диэлектрическая проницаемость топлива, 1,

ℓ - длина электродов камеры обработки - м,

t - время обработки топлива - с.

2. Устройство по п. 1, отличающееся тем, что корпус устройства имеет в сечении круглую или трапециевидную форму.

3. Устройство по п. 1, отличающееся тем, что в камере обработки топлива установлены одна и более пар электродов.

4. Устройство по п. 1, отличающееся тем, что электроды в корпусе установлены или вдоль потока топлива, или поперек.

5. Устройство по п. 1, отличающееся тем, что электроды изготовлены круглой или трапециевидной формы.

6. Устройство по п. 1, отличающееся тем, что изолирующие вставки между электродами имеют переменную длину, что позволяет менять расстояние между ними и, как следствие, менять напряженность электрического поля.

7. Устройство по п. 1, отличающееся тем, что электроды изготовлены или в виде пластины с отверстиями, или в виде сетки.

Документы, цитированные в отчете о поиске Патент 2017 года RU2614562C2

Способ получения кислот из нефтяных и минеральных масел 1927
  • Данилович А.И.
  • Петров Г.С.
  • Рабинович А.Ю.
SU18742A1
СПОСОБ СЖИГАНИЯ УГЛЕВОДОРОДНОГО ТОПЛИВА И УСТРОЙСТВО ДЛЯ РЕАЛИЗАЦИИ СПОСОБА 2004
  • Монич А.Е.
  • Монич Е.А.
RU2265158C1
МОДУЛЬ НАКОПЛЕНИЯ ЭЛЕКТРОЭНЕРГИИ 2014
  • Сенгоку Ейсуке
  • Маешима Тошиказу
  • Хоши Хироши
  • Котаки Акира
  • Киота Шигеюки
  • Танака Йошиюки
  • Игучи Тоёки
  • Саито Хироаки
  • Саеки Масаёши
RU2610475C1

RU 2 614 562 C2

Авторы

Анисимов Сергей Павлович

Анисимов Павел Федорович

Даты

2017-03-28Публикация

2015-05-20Подача