УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ЖИДКОГО УГЛЕВОДОРОДНОГО ТОПЛИВА (ВАРИАНТЫ) Российский патент 2008 года по МПК F02M27/04 

Описание патента на изобретение RU2330984C1

Изобретение относится к устройствам для обработки жидкого углеводородного топлива и может быть использовано в различных технологических процессах как при переработке жидкого углеводородного топлива с целью повышения выхода светлых нефтепродуктов, так и при подготовке его перед сжиганием в различных энергетических установках (котельных, теплостанциях и т.д.), а также в различных видах двигателей внутреннего сгорания.

Известно устройство для обработки топлива, содержащее стержень, выполненный электропроводящим и предназначенный для подсоединения к одному из выводов источника электропитания, корпус, установленный коаксиально снаружи относительно стержня с образованием камеры обработки топлива в зазоре между стержнем и корпусом, намотку, спирально расположенную вокруг стержня, электрод, предназначенный для подсоединения к другому из выводов источника электропитания, причем намотка выполнена разношаговой из двух проводов, которые расположены с образованием промежутка между ними и установлены с возможностью встречного протекания тока, при этом в камере обработки топлива один конец одного провода соединен со стержнем с одного его края, а противоположный конец другого провода соединен со стержнем с другого его края, другие концы проводов изолированы от стержня, корпус выполнен металлическим и упомянутый электрод подсоединен к корпусу (патент РФ №2215172 на изобретение, кл. F02М 27/04, опубл. 27.10.2003).

К недостаткам известного устройства следует отнести невысокое качество обработанного топлива, обусловленное ослабленным электромагнитным полем при протекании встречных токов по стержню с намоткой из двух проводов, а также невозможность применения данного устройства для высокомощных энергетических установок и двигателей внутреннего сгорания, требующих большой объем и высокую скорость протока обрабатываемого топлива.

Наиболее близким к изобретению по технической сущности и поставленной задаче является устройство для обработки топлива, содержащее стержень, выполненный электропроводящим и предназначенный для подсоединения к первому выводу источника электропитания в области конца стержня, ближней по ходу топлива, корпус, выполненный электропроводящим, предназначенный для подсоединения ко второму выводу источника электропитания и установленный снаружи относительно стержня с образованием камеры обработки топлива в зазоре между стержнем и корпусом, намотку, расположенную вокруг стержня и выполненную из провода, свободного от изоляции и изогнутого по спирали, диэлектрическую втулку, установленную внутри стержня в области его конца, дальней по ходу топлива, причем намотка выполнена из одного провода, пропущенного через отверстие диэлектрической втулки, при этом концы провода соединены со стержнем диаметрально противоположно в области его конца, ближнем по ходу топлива (патент РФ №46310 на полезную модель, кл. F02М 27/04, опубл. 27.06.2005 - прототип).

К недостаткам известного устройства следует отнести:

- невысокое качество обработанного топлива, обусловленное ослабленным электромагнитным полем при протекании встречных токов по стержню с намоткой из одного провода, пропущенного через отверстие диэлектрической втулки, концы которого соединены со стержнем диаметрально противоположно в области его конца, ближнем по ходу топлива;

- невозможность применения данного устройства для высокомощных энергетических установок и двигателей внутреннего сгорания, требующих большой объем и высокую скорость протока обрабатываемого топлива, из-за введения в электрическую схему переменного сопротивления и конденсатора, которые при высоких напряжениях шунтируют контур, образованный намоткой, и может возникнуть опасность поражения электрическим током обслуживающего персонала.

Технической задачей изобретения является создание новой конструкции устройства для обработки жидкого углеводородного топлива, обеспечивающего повышение качества обработки топлива и обладающего широкой областью применения.

Технический результат, который может быть получен при выполнении устройства для обработки жидкого углеводородного топлива по первому варианту, повышение экономии топлива при эксплуатации различных типов и мощности энергетических установок и двигателей внутреннего сгорания, снижение токсичности и объема отработанных газов, возможность параллельно направленного подсоединения впускного и выпускного патрубков заявляемого устройства к энергетической установке или двигателю внутреннего сгорания.

Технический результат, который может быть получен при выполнении устройства для обработки жидкого углеводородного топлива по второму варианту, повышение экономии топлива при эксплуатации различных типов и мощности энергетических установок и двигателей внутреннего сгорания, снижение токсичности и объема отработанных газов, возможность перпендикулярно направленного подсоединения впускного и выпускного патрубков заявляемого устройства к энергетической установке или двигателю внутреннего сгорания.

Для решения поставленной технической задачи по первому варианту устройства для обработки жидкого углеводородного топлива, содержащего корпус, имеющий внутреннюю полость и выполненный электропроводящим с возможностью подсоединения к одному из выводов источника питания, стержень, выполненный электропроводящим с возможностью подсоединения к другому из выводов источника питания и расположенный во внутренней полости корпуса с образованием камеры обработки топлива в зазоре между стержнем и корпусом, намотку, расположенную вокруг стержня и выполненную из одного провода, свободного от изоляции и изогнутого по спирали, диэлектрическую втулку, согласно изобретению диэлектрическая втулка закреплена в ближней по ходу топлива торцевой части корпуса, имеющего цилиндрическую форму внутренней полости, в сквозном отверстии диэлектрической втулки установлен хвостовой частью стержень, рабочая часть которого имеет продольное центральное отверстие и наружную поверхность в форме конуса или усеченного конуса, при этом стержень своим большим наружным диаметром расположен к входу топлива в камеру обработки, намотка расположена по длине рабочей части стержня и имеет электрическое соединение одним концом с наружной поверхностью рабочей части стержня, ближней к входу топлива в камеру обработки, и другим концом диэлектрическое соединение с наружной поверхностью рабочей части стержня, ближней к выходу топлива из камеры обработки, на боковой наружной поверхности корпуса расположены впускной и выпускной патрубки, а на торцевой части корпуса, противоположной торцевой части с закрепленной диэлектрической втулкой, установлена заглушка.

В первом варианте заявляемого устройства для обработки жидкого углеводородного топлива целесообразно, чтобы

- общее количество витков намотки составляло , где W - общее количество витков намотки, Lc - длина рабочей части стержня;

- в намотке, состоящей из нескольких групп витков, количество групп витков намотки составляло , где Кг - количество групп витков в намотке,

- количество витков намотки в одной группе, dп - диаметр провода намотки;

- больший и меньший диаметры наружной поверхности рабочей части стержня были выполнены удовлетворяющими соотношению

,

где dС1, dС2 - больший и меньший диаметры наружной поверхности рабочей части стержня;

диаметр внутренней полости корпуса и среднее значение диаметра наружной поверхности рабочей части стержня были выполнены удовлетворяющими соотношению

,

где DК - диаметр внутренней полости корпуса,

,

dС - среднее значение диаметра наружной поверхности рабочей части стержня;

длина внутренней полости корпуса и длина рабочей части стержня были выполнены удовлетворяющими соотношению

,

где LПК - длина внутренней полости корпуса;

площадь поперечного сечения выходного патрубка и площадь поперечного сечения входного патрубка были выполнены удовлетворяющими соотношению

,

где Sвып, Sвп - площадь поперечного сечения выпускного и впускного каналов.

Для решения поставленной технической задачи по второму варианту устройства для обработки жидкого углеводородного топлива, содержащего корпус, имеющий внутреннюю полость и выполненный электропроводящим с возможностью подсоединения к одному из выводов источника питания, стержень, выполненный электропроводящим с возможностью подсоединения к другому из выводов источника питания и расположенный во внутренней полости корпуса с образованием камеры обработки топлива в зазоре между стержнем и корпусом, намотку, расположенную вокруг стержня и выполненную из одного провода, свободного от изоляции и изогнутого по спирали, диэлектрическую втулку, согласно изобретению диэлектрическая втулка закреплена в ближней по ходу топлива торцевой части корпуса, имеющего цилиндрическую форму внутренней полости, в сквозном отверстии диэлектрической втулки установлен хвостовой частью стержень, рабочая часть которого имеет продольное центральное отверстие и наружную поверхность в форме конуса или усеченного конуса, при этом стержень своим большим наружным диаметром расположен к входу топлива в камеру обработки, намотка расположена по длине рабочей части стержня и имеет электрическое соединение одним концом с наружной поверхностью рабочей части стержня, ближней к входу топлива в камеру обработки, и диэлектрическое соединение с наружной поверхностью рабочей части стержня, ближней к выходу топлива из камеры обработки, на боковой наружной поверхности корпуса расположен впускной патрубок, а на торцевой части корпуса, противоположной торцевой части с закрепленной диэлектрической втулкой, установлен выпускной патрубок.

Во втором варианте заявляемого устройства для обработки жидкого углеводородного топлива целесообразно, чтобы

- общее количество витков намотки составляло , где W - общее количество витков намотки, Lc - длина рабочей части стержня;

- в намотке, состоящей из нескольких групп витков, количество групп витков намотки составляло

,

где Кг - количество групп витков в намотке

Wг - количество витков намотки в одной группе, , dп - диаметр провода намотки;

- больший и меньший диаметры наружной поверхности рабочей части стержня были выполнены удовлетворяющими соотношению

,

где dС1, dС2 - больший и меньший диаметры наружной поверхности рабочей части стержня;

диаметр внутренней полости корпуса и среднее значение диаметра наружной поверхности рабочей части стержня были выполнены удовлетворяющими соотношению

,

где DK - диаметр внутренней полости корпуса,

,

dC - среднее значение диаметра наружной поверхности рабочей части стержня;

- длина внутренней полости корпуса и длина рабочей части стержня были выполнены удовлетворяющими соотношению

,

где LПК - длина внутренней полости корпуса;

площадь поперечного сечения выходного патрубка и площадь поперечного сечения входного патрубка были выполнены удовлетворяющими соотношению

,

где Sвып, Sвп - площадь поперечного сечения выпускного и впускного каналов.

Варианты исполнения заявляемого изобретения поясняются чертежами, где на фиг.1 показан общий вид первого варианта устройства для обработки жидкого углеводородного топлива в разрезе; на фиг.2 показан общий вид второго варианта устройства для обработки жидкого углеводородного топлива в разрезе.

Устройство для обработки жидкого углеводородного топлива по первому варианту (фиг.1) содержит корпус 1, имеющий внутреннюю полость и выполненный электропроводящим с возможностью подсоединения к одному из выводов 2 источника питания (источник питания на чертежах не показан), стержень 3, выполненный электропроводящим с возможностью подсоединения к другому из выводов 4 источника питания и расположенный во внутренней полости корпуса с образованием камеры 5 обработки топлива в зазоре между стержнем 3 и корпусом 1, намотку 6, расположенную вокруг стержня 3 и выполненную из одного провода, свободного от изоляции и изогнутого по спирали, диэлектрическую втулку 7, закрепленную в ближней по ходу топлива торцевой части корпуса 1, имеющего цилиндрическую форму внутренней полости, в сквозном отверстии диэлектрической втулки 7 установлен хвостовой частью стержень 3, рабочая часть которого имеет продольное центральное отверстие 8 и наружную поверхность в форме конуса или усеченного конуса, при этом стержень 3 своим большим наружным диаметром расположен к входу топлива в камеру 5 обработки, намотка 6 расположена по длине рабочей части стержня 3 и имеет электрическое соединение одним концом с наружной поверхностью рабочей части стержня 3, ближней к входу топлива в камеру 5 обработки, и диэлектрическое соединение с наружной поверхностью рабочей части стержня 3, ближней к выходу топлива из камеры 5 обработки, на боковой наружной поверхности корпуса 1 расположены впускной 9 и выпускной 10 патрубки, а на торцевой части корпуса 1, противоположной торцевой части с закрепленной диэлектрической втулкой 7, установлена заглушка 11.

Второй вариант заявляемого устройства для обработки жидкого углеводородного топлива (фиг.2) отличается от первого варианта тем, что на боковой наружной поверхности корпуса 1 расположены впускной патрубок 9, а на торцевой части корпуса 1, противоположной торцевой части с закрепленной диэлектрической втулкой 7, установлен выпускной патрубок 10.

Устройство для обработки жидкого углеводородного топлива устанавливается в топливопроводе энергетической установки или двигателя внутреннего сгорания посредством фланцевого или иного соединения, обеспечивающего требуемую надежность и герметичность, и работает следующим образом.

Жидкое углеводородное топливо через впускной патрубок 9 поступает в камеру обработки 5, проходя вдоль рабочей части стержня 3 с намоткой 6, подвергается электромагнитному воздействию и через выпускной патрубок 10 поступает на вход энергетической установки или двигателя внутреннего сгорания для последующего сжигания. При этом через выводы 2 и 4 с источника электропитания на намотку 6 подается переменное напряжение от 12 В до 2,76 кВ с частотой 0,05÷12,5 кГц или постоянное напряжение 12÷600 В. За счет электромагнитного воздействия в обрабатываемом топливе происходит ослабление межмолекулярных связей, вследствие чего топливо распыляется на более мелкие фракции и более полно и с большей температурой сгорает. Выполнение рабочей части стержня 3 в форме конуса или усеченного конуса, а следовательно, и коническая форма намотки 6, обеспечивает более полное стекание заряженных частиц по направлению потока топлива, улучшая его поляризацию, тем самым повышая качество обработки топлива вне зависимости от его количества и скорости прохождения через камеру обработки 5. Использование намотки 6 из одного провода, расположенного по длине рабочей части стержня 3 и имеющего электрическое соединение одним концом с наружной поверхностью рабочей части стержня 3, ближнего к входу топлива в камеру обработки 5, и диэлектрическое соединение с наружной поверхностью рабочей части стержня 3, ближней к выходу топлива из камеры обработки 5, устраняет протекание встречных токов по стержню 3 с намоткой 6, что обеспечивает повышение качества обработки топлива и расширяет область применения заявляемого устройства, включая возможность его использования в мощных энергетических установках и двигателях внутреннего сгорания, требующих большой объем и высокую скорость протекания обрабатываемого топлива и других нефтепродуктов с высокой вязкостью и большим содержанием серы.

Сравнительные технические характеристики различных видов жидкого углеводородного топлива, обработанного с использованием прототипа и заявляемого устройства, приведены в таблице 1.

Как видно из таблицы 1, после обработки топлива с помощью прототипа и заявляемого устройства основной показатель эффективности топлива - теплота сгорания выше, чем у базового топлива, не подверженного обработке. Однако при обработке топлива с помощью заявляемого устройства теплота сгорания топлива выше, чем у прототипа по дизельному топливу на 608 кДж/кг, по мазуту Ф-5 - на 1780 кДж/кг, по мазуту М-100 - на 2180 кДж/кг. По другим техническим характеристикам топливо, обработанное с помощью заявляемого устройства, имеет с точки зрения эксплуатации значительно лучшие показатели, чем топливо, обработанное с использованием прототипа.

В таблицах 2-3 приведены результаты испытаний прототипа и заявленного устройства соответственно на различных видах двигателей внутреннего сгорания и энергетических установках мощностью от 0,75 до 100 МВт. Как видно из приведенных таблиц, эксплуатационные характеристики и экологические показатели работы двигателей внутреннего сгорания и энергетических установок, достигаемые с использованием заявляемого устройства, значительно лучше, чем у прототипа. Так, по важнейшей технической характеристике - снижение расхода топлива эффективность использования заявляемого устройства в 3-4 раза выше, чем у прототипа. Важнейшие экологические показатели - уменьшение содержания угарного газа, оксидов азота и серы при использовании заявляемого устройства в 4-30 раз выше, чем у прототипа.

Указанные выше эксплуатационные характеристики и экологические показатели работы двигателей внутреннего сгорания и энергетических установок выгодно отличают заявляемое изобретение от прототипа.

Наличие отличительных признаков дает возможность получить положительный эффект, выражающийся в создании нового устройства для обработки жидкого углеводородного топлива, обеспечивающего повышение качества обработки топлива и обладающего широкой областью применения.

Использование заявляемого устройства для обработки жидкого углеводородного топлива в различных технологических процессах как при переработке жидкого углеводородного топлива с целью повышения выхода светлых нефтепродуктов, так и при подготовке его перед сжиганием в различных энергетических установках (котельных, теплостанциях и т.д.), а также в различных видах двигателей внутреннего сгорания обеспечивает ему соответствие критерию «промышленная применимость».

Таблица 1
Сравнительные технические характеристики жидкого углеводородного топлива, обработанного прототипом и заявленным устройством
Характеристика топливаЕдиница измеренияСтандартное топливоОбработанное топливос использованием прототипас использованием заявляемого устройстваСтандартное дизельное топливо ГОСТ 1667-78Вязкость кинематическаямм253,393,11Плотностьг/см20,930,880,81Температура вспышки°С8879,270,2Теплота сгорания низшаякДж/кг426334391244520Мазут Ф-5 ГОСТ 10585-75Вязкость кинематическаямм254,73,3Плотностьг/см20,940,910,87Температура вспышки°С807872Теплота сгорания низшаякДж/кг414544193043710Мазут марки М-100Вязкость кинематическаямм25,55,24,3Плотностьг/см20,970,960,91Температура вспышки°С858277,2Теплота сгорания низшаякДж/кг402404072042900

Таблица 2
Результаты испытаний прототипа и заявленного устройства на различных видах двигателей внутреннего сгорания.
Характеристики работы двигателя внутреннего сгорания при использовании обработанного топлива в сравнении со стандартным топливомОбработанное топливос использованием прототипас использованием заявляемого устройстваЭксплуатационные характеристика работы двигателя внутреннего сгоранияСнижение расхода топлива, %2-75-20Уменьшение коэффициента избытка воздуха (λ), %530Уменьшение количества сажевых отложений, %1001000Увеличение мощности, %2-310Увеличение ресурса эксплуатации, %10-20100Выравнивание динамических нагрузок по цилиндрам, %2-37Уменьшение динамических нагрузок в камере сгорания, %2-410Уменьшение температуры отходящих газов (°С), %13Увеличение давления масла в системе смазки двигателя, %525Экологические показатели работы двигателя внутреннего сгорания (характеристика отходящих газов)Уменьшение содержания кислорода (О2), %100300Уменьшение содержания угарного газа (СО), %150600Уменьшение содержания оксидов азота (NOxx), %525Уменьшение содержания углеводородов (СН), %30400Уменьшение шумности работы двигателя (дБ), %515Увеличение содержания углекислого газа (СО2), %1025

Таблица 3
Результаты испытаний прототипа и заявленного устройства на энергетических установках (котельные агрегаты, работающие на дизельном топливе и мазуте)
Характеристики работы энергетической установки при использовании обработанного топлива в сравнении с аналогичным стандартным топливомОбработанное топливос использованием прототипас использованием заявляемого устройстваЭксплуатационные характеристика работы энергетической установкиСнижение расхода топлива, %2-710-30Уменьшение коэффициента избытка воздуха (λ), %530Уменьшение количества сажевых отложений, %1001000Увеличение мощности, %2-310Увеличение ресурса эксплуатации, %10-20100Увеличение кпд, %0,6-27Уменьшение потребления электрической энергии тяго-дутьевыми машинами, %2-410Уменьшение температуры отходящих газов (°С), %2-510Экологические показатели работы энергетических установок (характеристика отходящих газов)Уменьшение содержания кислорода (О2), %100300Уменьшение содержания угарного газа (СО), %150600Уменьшение содержания оксидов азота (NOxx), %525Уменьшение содержания углеводородов (СН), %30400Уменьшение содержания двуокиси серы (SO2), %15500Увеличение содержания углекислого газа (СО2), %2-530

Похожие патенты RU2330984C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ЖИДКОГО И ГАЗООБРАЗНОГО УГЛЕВОДОРОДНОГО ТОПЛИВА 2014
  • Мамченко Виктор Михайлович
  • Малюхин Александр Сергеевич
  • Малюхин Дмитрий Михайлович
RU2591746C2
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ТОПЛИВА (ВАРИАНТЫ) 2002
  • Абакаров А.Н.
  • Мамченко В.М.
  • Туев С.В.
  • Захватов Е.М.
RU2215172C1
Способ электрической обработки топлива 2019
  • Ивченко Сергей Викторович
  • Шумовский Владимир Валерьевич
RU2719762C1
Топливная форсунка 2016
  • Нагорный Владимир Степанович
  • Колодяжный Дмитрий Юрьевич
  • Сипатов Алексей Матвеевич
  • Хрящиков Михаил Сергеевич
  • Семаков Глеб Николаевич
RU2634649C1
Топливная форсунка авиационного двигателя 2016
  • Нагорный Владимир Степанович
  • Колодяжный Дмитрий Юрьевич
RU2636947C1
ИНДУКЦИОННО-ДИНАМИЧЕСКИЙ ЭЛЕКТРОДВИГАТЕЛЬ ЦИКЛИЧЕСКОГО ДЕЙСТВИЯ 2011
  • Болюх Владимир Федорович
  • Лучук Владимир Феодосьевич
  • Щукин Игорь Сергеевич
RU2467455C2
ТОПЛИВНАЯ ФОРСУНКА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2015
  • Нагорный Владимир Степанович
  • Колодяжный Дмитрий Юрьевич
  • Сипатов Алексей Матвеевич
  • Хрящиков Михаил Сергеевич
  • Семаков Глеб Николаевич
RU2615618C1
ЭЛЕКТРОМАГНИТНЫЙ ТОПЛИВНЫЙ ИНЖЕКТОР ДЛЯ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ 1998
  • Рикко Марио
RU2224132C2
ЭЛЕКТРОМАГНИТНЫЙ ЗАМОК (ВАРИАНТЫ) 2013
  • Маслов Дмитрий Валентинович
  • Кожевников Дмитрий Анатольевич
  • Никифоров Михаил Владимирович
RU2543413C2
ФИЛЬТР МАГНИТНОЙ ОЧИСТКИ И ОБРАБОТКИ АВТОМОБИЛЬНОГО И АВИАЦИОННОГО ТОПЛИВА ЭКОМАГ-10г, СПОСОБ СОЕДИНЕНИЯ-СБОРКИ 2012
  • Голиков Юрий Иванович
  • Бугаевский Тимофей Михайлович
RU2548705C2

Иллюстрации к изобретению RU 2 330 984 C1

Реферат патента 2008 года УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ЖИДКОГО УГЛЕВОДОРОДНОГО ТОПЛИВА (ВАРИАНТЫ)

Изобретение относится к двигателестроению, в частности к устройствам обработки жидкого углеводородного топлива, и может быть использовано в различных технологических процессах. Изобретение позволяет создать новую конструкцию устройства для обработки жидкого углеводородного топлива, обеспечивающего повышение качества обработки топлива и обладающего широкой областью применения. Устройство обработки жидкого углеводородного топлива содержит корпус, имеющий внутреннюю полость и выполненный электропроводящим с возможностью подсоединения к одному из выводов источника питания, стержень, выполненный электропроводящим с возможностью подсоединения к другому из выводов источника питания и расположенный во внутренней полости корпуса с образованием камеры обработки топлива в зазоре между стержнем и корпусом, намотку, расположенную вокруг стержня и выполненную из одного провода, свободного от и изогнутого по спирали, диэлектрическую втулку. Диэлектрическая втулка закреплена в ближней по ходу топлива торцевой части корпуса, имеющего цилиндрическую форму внутренней полости, в сквозном отверстии диэлектрической втулки установлен хвостовой частью стержень, рабочая часть которого имеет продольное центральное отверстие и наружную поверхность в форме конуса или усеченного конуса. Стержень своим большим наружным диаметром расположен к входу топлива в камеру обработки. Намотка расположена по длине рабочей части стержня и имеет электрическое соединение одним концом с наружной поверхностью рабочей части стержня, ближней к входу в камеру обработки, и диэлектрическое соединение с наружной поверхностью рабочей части стержня, ближней к выходу топлива из камеры обработки. На боковой наружной поверхности корпуса расположены впускной и выпускной патрубки. На торцевой части корпуса, противоположной торцевой части с закрепленной диэлектрической втулкой, установлена заглушка. По второму варианту выпускной патрубок установлен на торцевой части корпуса, противоположной торцевой части с закрепленной диэлектрической втулкой. 2 н. и 12 з.п. ф-лы, 2 ил., 3 табл.

Формула изобретения RU 2 330 984 C1

1. Устройство для обработки жидкого углеводородного топлива, содержащее корпус, имеющий внутреннюю полость и выполненный электропроводящим с возможностью подсоединения к одному из выводов источника питания, стержень, выполненный электропроводящим с возможностью подсоединения к другому из выводов источника питания и расположенный во внутренней полости корпуса с образованием камеры обработки топлива в зазоре между стержнем и корпусом, намотку, расположенную вокруг стержня и выполненную из одного провода, свободного от изоляции и изогнутого по спирали, диэлектрическую втулку, отличающееся тем, что диэлектрическая втулка закреплена в ближней по ходу топлива торцевой части корпуса, имеющего цилиндрическую форму внутренней полости, в сквозном отверстии диэлектрической втулки установлен хвостовой частью стержень, рабочая часть которого имеет продольное центральное отверстие и наружную поверхность в форме конуса или усеченного конуса, при этом стержень своим большим наружным диаметром расположен к входу топлива в камеру обработки, намотка расположена по длине рабочей части стержня и имеет электрическое соединение одним концом с наружной поверхностью рабочей части стержня, ближней к входу топлива в камеру обработки, и диэлектрическое соединение с наружной поверхностью рабочей части стержня, ближней к выходу топлива из камеры обработки, на боковой наружной поверхности корпуса расположены впускной и выпускной патрубки, а на торцевой части корпуса, противоположной торцевой части с закрепленной диэлектрической втулкой, установлена заглушка.2. Устройство для обработки топлива по п.1, отличающееся тем, что общее количество витков намотки составляет , где W - общее количество витков намотки, Lc - длина рабочей части стержня.3. Устройство для обработки топлива по п.2, отличающееся тем, что в намотке, состоящей из нескольких групп витков, количество групп витков намотки составляет , где Кг - количество групп витков в намотке, - количество витков намотки в одной группе, dп - диаметр провода намотки.4. Устройство для обработки топлива по п.1, отличающееся тем, что больший и меньший диаметры наружной поверхности рабочей части стержня выполнены удовлетворяющими соотношению , где dС1, dС2 - больший и меньший диаметры наружной поверхности рабочей части стержня.5. Устройство для обработки топлива по п.4, отличающееся тем, что диаметр внутренней полости корпуса и среднее значение диаметра наружной поверхности рабочей части стержня выполнены удовлетворяющими соотношению , где Dk - диаметр внутренней полости корпуса, , dc - среднее значение диаметра наружной поверхности рабочей части стержня.6. Устройство для обработки топлива по п.2, отличающееся тем, что длина внутренней полости корпуса и длина рабочей части стержня выполнены удовлетворяющими соотношению , где Lпк - длина внутренней полости корпуса.7. Устройство для обработки топлива по п.1, отличающееся тем, что площадь поперечного сечения выходного патрубка и площадь поперечного сечения входного патрубка выполнены удовлетворяющими соотношению , где Sвып, Sвп - площадь поперечного сечения выпускного и впускного каналов.8. Устройство для обработки жидкого углеводородного топлива, содержащее корпус, имеющий внутреннюю полость и выполненный электропроводящим с возможностью подсоединения к одному из выводов источника питания, стержень, выполненный электропроводящим с возможностью подсоединения к другому из выводов источника питания и расположенный во внутренней полости корпуса с образованием камеры обработки топлива в зазоре между стержнем и корпусом, намотку, расположенную вокруг стержня и выполненную из одного провода, свободного от изоляции и изогнутого по спирали, диэлектрическую втулку, отличающееся тем, что диэлектрическая втулка закреплена в ближней по ходу топлива торцевой части корпуса, имеющего цилиндрическую форму внутренней полости, в сквозном отверстии диэлектрической втулки установлен хвостовой частью стержень, рабочая часть которого имеет продольное центральное отверстие и наружную поверхность в форме конуса или усеченного конуса, при этом стержень своим большим наружным диаметром расположен к входу топлива в камеру обработки, намотка расположена по длине рабочей части стержня и имеет электрическое соединение одним концом с наружной поверхностью рабочей части стержня, ближней к входу топлива в камеру обработки, и диэлектрическое соединение с наружной поверхностью рабочей части стержня, ближней к выходу топлива из камеры обработки, на боковой наружной поверхности корпуса расположен впускной патрубок, а на торцевой части корпуса, противоположной торцевой части с закрепленной диэлектрической втулкой, установлен выпускной патрубок.9. Устройство для обработки топлива по п.8, отличающееся тем, что общее количество витков намотки составляет , где W - общее количество витков намотки, Lc - длина рабочей части стержня.10. Устройство для обработки топлива по п.9, отличающееся тем, что в намотке, состоящей из нескольких групп витков, количество групп витков намотки составляет , где Кг - количество групп витков в намотке, - количество витков намотки в одной группе, dn - диаметр провода намотки.11. Устройство для обработки топлива по п.8, отличающееся тем, что больший и меньший диаметры наружной поверхности рабочей части стержня выполнены удовлетворяющими соотношению , где dC1, dC2 - больший и меньший диаметры наружной поверхности рабочей части стержня.12. Устройство для обработки топлива по п.11, отличающееся тем, что диаметр внутренней полости корпуса и среднее значение диаметра наружной поверхности рабочей части стержня выполнены удовлетворяющими соотношению , где Dk - диаметр внутренней полости корпуса, , dc - среднее значение диаметра наружной поверхности рабочей части стержня.13. Устройство для обработки топлива по п.9, отличающееся тем, что длина внутренней полости корпуса и длина рабочей части стержня выполнены удовлетворяющими соотношению , где LПК - длина внутренней полости корпуса.14. Устройство для обработки топлива по п.8, отличающееся тем, что площадь поперечного сечения выходного патрубка и площадь поперечного сечения входного патрубка выполнены удовлетворяющими соотношению , где Sвып, Sвп - площадь поперечного сечения выпускного и впускного каналов.

Документы, цитированные в отчете о поиске Патент 2008 года RU2330984C1

УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ТОПЛИВА (ВАРИАНТЫ) 2002
  • Абакаров А.Н.
  • Мамченко В.М.
  • Туев С.В.
  • Захватов Е.М.
RU2215172C1
Устройство для обработки топлива 1988
  • Захватов Евгений Михайлович
  • Дубоносов Михаил Алексеевич
  • Сидоров Владимир Михайлович
  • Секунов Николай Андреевич
SU1590608A1
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ЖИДКИХ И/ИЛИ ГАЗООБРАЗНЫХ СРЕД 1995
  • Данилов В.И.
  • Омельяненко М.Н.
  • Ковальчук Я.М.
  • Белоус Ю.Н.
  • Омельяненко М.М.
RU2093699C1
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ТОПЛИВА 1999
  • Лыженков В.Н.
  • Хохонин А.А.
RU2153594C1
СПОСОБ ОБРАБОТКИ ТОПЛИВА 1992
  • Федотов А.Д.
  • Баканов А.А.
  • Шабордин А.В.
RU2038506C1
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ТОПЛИВА В ДВИГАТЕЛЕ ВНУТРЕННЕГО СГОРАНИЯ 1992
  • Захватов Е.М.
  • Лыженков В.Н.
RU2062899C1
DE 10040158 A1, 07.03.2002
US 3976726 A1, 24.08.1976
GB 2058908 A, 15.04.1981.

RU 2 330 984 C1

Авторы

Туев Сергей Владимирович

Мамченко Виктор Михайлович

Багрянцев Алексей Валерьевич

Даты

2008-08-10Публикация

2007-07-03Подача