СПЛАВ НА ОСНОВЕ ХРОМА И СПОСОБ ВЫПЛАВКИ СПЛАВА Российский патент 2017 года по МПК C21D6/00 C22C27/06 C22C1/06 

Описание патента на изобретение RU2620405C1

Изобретение относится к области металлургии и может быть использовано для изготовления деталей, работающих при высоких температурах, например, деталей двигателей коррекции орбиты и ориентации космических аппаратов.

Известен жаростойкий и жаропрочный сплав на основе хрома, содержащий, мас. %: никель 25-29, вольфрам 5,0-10,0, ванадий 0,1-0,4, титан 0,05-0,3, иттрий 0,05-0,5, кислород не более 0,08, азот не более 0,04, кремний не более 0,1, алюминий не более 0,06, железо не более 0,5, хром - остальное (RU 2570608 C1, C22C 27/06,10.12.2014).

Известен сплав на основе хрома, содержащий, мас. %: железо 5,0-15,0, вольфрам 10,0-35,0, цирконий и/или гафний 0,5-1,5, титан 0,5-1,0, окисел лантаноида 0,05-0,1, марганец 0,05-0,1, хром - остальное (RU 2236480 C1, C22C 27/06, 20.2004).

Наиболее близким аналогом изобретения является жаропрочный сплав на основе хрома, содержащий, мас. %: никель 31-33, вольфрам 1,0-3,0, ванадий 0,1-0,4, титан 0,05-0,3, алюминий и кремний в сумме - не более 0,2, кислород не более 0,08, азот не более 0,04, железо не более 0,5, углерод не более 0,08 (RU 2557438 C1, C22C 27/06, 20.07.2015).

Недостатком сплава является пониженные значения напряжений ползучести при температуре эксплуатации свыше 900°C, обусловленные эффектом зернограничного проскальзывания и резкого снижения прочности сплава в интервале температур 900-1100°C (Фиг. 1).

Известен способ выплавки высокохромистого сплава на основе никеля, включающий загрузку шихты, содержащей электролитически нерафинированный хром, никель, шлакообразующие компоненты и раскислители, их расплавление и разливку в изложницы (RU 2070228 C1, C21C 5/52, 10.12.1996).

Наиболее близким аналогом изобретения является способ выплавки сплава на основе хрома, включающий загрузку в вакуумную электропечь шихты, состоящей из чистых исходных материалов, включающих электролитически рафинированный хром, никель и вольфрам, нагрев шихты до температуры 1600-1620°C до ее полного расплавления, выдержку 5-10 минут, снижение температуры до 1550-1570°C и ввод в расплав ванадия и титана, а через 1-2 минуты для раскисления и модифицирования - микролегирующих добавок, после чего разливают расплав в изложницы при температуре 1550-1570°C (RU 2557438 C1, C22C 27/06, 20.07.2015).

Техническим результатом заявленной группы изобретений является повышение сопротивления ползучести и увеличение длительной прочности сплава на основе хрома при эксплуатации в интервале температур 900-1100°C за счет повышения сопротивления зернограничному проскальзыванию.

Это позволяет повысить срок эксплуатации и надежность деталей, работающих при высоких температурах и, таким образом, изделий ответственного назначения.

Для достижения технического результата жаростойкий и жаропрочный сплав на основе хрома содержит никель, вольфрам, ванадий, титан, ниобий, тантал, цирконий и гафний и примеси при следующем соотношении компонентов, мас. %:

никель 31,0-33,0 вольфрам 1,0-3,0 ванадий 0,1-0,4 титан 0,05-0,3 тантал 0,05-0,2 ниобий 0,05-0,2 гафний 0,05-0,2 цирконий до 0,05 примеси: азот не более 0,03 кислород не более 0,04 углерод не более 0,06 алюминий + кремний не более 0,2 хром остальное

Способ выплавки сплава на основе хрома по п. 1, включающий загрузку шихты, состоящей из чистых исходных материалов, в тигель и дозаторы вакуумной печи, герметизацию и вакуумирование камеры печи до остаточного давления 0,133 Па (10-3 мм рт.ст.), дегазацию шихты путем ее нагрева до 800°C со скоростью 5-7°C/мин, а затем от 800 до 1300°C со скоростью 10-12°C/мин, подачу в печь аргона высокой чистоты под давлением 9-15 кПа для создания инертной атмосферы, нагрев до 1620-1670°C с выдержкой до полного расплавления шихты, содержащей никель, 1/2 часть хрома, вольфрам, тантал и ниобий, введение в расплав ванадия и оставшейся части хрома, выдержку 15-20 минут, снижение температуры до 1570-1600°C, введение в расплав микродобавок в следующей последовательности: гафний, цирконий, титан, ферроцерий и лигатура NiB с выдержкой 1-3 минуты после введения каждой добавки, разливку металла с температуры расплава 1570±10°C в изложницы, подогретые до температуры 200-250°C, охлаждение с печью в среде инертного газа со скоростью не более 150°C/ч.

Цель микролегирования - повышение прочности границ зерен и, таким образом, уменьшение склонности к межзеренному проскальзыванию и, вследствие этого, повышение прочности и сопротивления ползучести при температурах свыше 900°C.

Установленные пределы содержания микродобавок в сплаве определяются следующим образом.

При их содержании, меньшем указанного, эффекта повышения сопротивлению межзеренному проскальзыванию не наблюдается.

При большем содержании микродобавок (более 0,2% тантала; ниобия, гафния и 0,05% циркония) в сплавах на основе хрома образуются интерметаллидные фазы, наличие которых приводит к охрупчиванию сплава.

Эффект от введения микродобавок дополнительно проявляется в предотвращении снижения жаростойкости. Та, Nb, Hf, Zr - сильные карбидообразующие элементы (более сильные, чем хром), их наличие предотвращает образование карбида хрома, т.е. не происходит обеднение хромом твердого раствора и, таким образом, снижение жаростойкости сплава.

Введение в сплав тантала, гафния, ниобия и циркония позволяет повысить на 40-50% прочность сплава и предотвратить аномальную ползучесть при температуре свыше 900°C и в результате существенно снизить интенсивность ползучести.

Пример реализации способа выплавки сплава

Для выплавки сплава использовали следующие чистые шихтовые материалы: электролитический рафинированный хром марки хром электролитический рафинированный ЭРХ1; никель первичный Н1У; вольфрам металлический высокой чистоты ШВЧ; ванадий ВНМ-1; титан губчатый ТГ100, тантал ТВЧ, гафний ГФЭ-1, ниобий НБШ-0, цирконий Э-110. Для раскисления и модифицирования сплава использовали ферроцерий МЦ50ЖЗ, лигатуру NiB из расчета содержания церия в сплаве 0,1 мас. % и бора - 0,01 мас. %.

Расчетное содержание легирующих элементов и пример шихтовки сплава приведен в таблице 1.

В тигель печи загружают никель, 1/2 часть хрома, вольфрам, ниобий, тантал. Оставшуюся часть хрома и ванадия помещают в корзину печи для введения в тигель после расплавления основной части шихты. Гафний, цирконий, титан, ферроцерий и лигатуру NiB размещают в ячейках дозатора.

После размещения шихты камеру печи герметизируют и вакуумируют до остаточного давления 0,133 Па (10-3 мм рт.ст.) и проводят дегазацию шихты в процессе нагрева до температуры 800°C со скоростью 5-7°C/мин и от 800 до 1300°C со скоростью 10-12°C/мин. Затем в камеру печи подают инертный газ аргон повышенной чистоты до давления 9-15 кПа (70-110 мм рт.ст.) для предотвращения испарения легирующих элементов в процессе плавки. Шихту нагревают до температуры 1620-1670°C с выдержкой до полного расплавления, вводят оставшийся хром и ванадий, выдерживают при этой температуре 15-20 минут для полного растворения хрома и ванадия и усреднения по объему ванны, а затем снижают температуру до 1570-1600°C и вводят в расплав микродобавки в последовательности: гафний, цирконий, титан, ферроцерий и модификатор NiB с выдержкой 1-3 минуты после введения каждой добавки, после чего металл разливают в кокильные изложницы диаметром 75 мм, высотой 600 мм, подогретые до температуры 200-250°C, и охлаждают с печью в среде инертного газа со скоростью охлаждения не более 150°C/час (в данном случае в течение не менее 10 часов).

Из одной плавки сплава массой ~ 55 кг изготавливают 2 слитка массой ~ 23 кг (с прибыльной частью) каждый.

Всего было выплавлено 4 плавки массой ~ 55 кг каждая. Из одной плавки сплава изготавливают 2 полных слитка массой ~ 23 кг (с прибыльной частью). Было получено 2 слитка с химическим составом прототипа в соответствии с ТУ 1-809-321-87 и 6 слитков с составом, соответствующим изобретению, т.е. с микролегированием (табл. 2).

На образцах из плавок, состав которых соответствует прототипу и изобретению, определяли механические свойства при 20-25°C и повышенных температурах. Предлагаемый сплав и способ его выплавки позволяют повысить предел прочности при температурах свыше 900°C (табл. 3), предотвратить аномальную ползучесть (фиг. 2, 3).

Похожие патенты RU2620405C1

название год авторы номер документа
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ ХРОМА И СПОСОБ ВЫПЛАВКИ СПЛАВА НА ОСНОВЕ ХРОМА 2014
  • Береснев Александр Германович
  • Бутрим Виктор Николаевич
  • Каширцев Валентин Николаевич
  • Адаскин Анатолий Матвеевич
RU2557438C1
ЖАРОПРОЧНЫЙ СПЛАВ 2016
RU2617272C1
ДЕФОРМИРУЕМЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 2019
  • Храмин Роман Владимирович
  • Буров Максим Николаевич
  • Логунов Александр Вячеславович
  • Данилов Денис Викторович
  • Лещенко Игорь Алексеевич
  • Заводов Сергей Александрович
  • Михайлов Александр Михайлович
  • Михайлов Михаил Александрович
  • Мухтаров Шамиль Хамзаевич
  • Мулюков Радик Рафикович
RU2695097C1
ЖАРОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2008
  • Каблов Евгений Николаевич
  • Ломберг Борис Самуилович
  • Овсепян Сергей Вячеславович
  • Лимонова Елена Николаевна
  • Бакрадзе Михаил Михайлович
  • Чабина Елена Борисовна
  • Вавилин Николай Львович
RU2365657C1
ГРАНУЛИРУЕМЫЙ ВЫСОКОЖАРОПРОЧНЫЙ НИКЕЛЕВЫЙ СПЛАВ И ИЗДЕЛИЕ, ИЗГОТОВЛЕННОЕ ИЗ НЕГО 2016
  • Каблов Евгений Николаевич
  • Оспенникова Ольга Геннадиевна
  • Бакрадзе Михаил Михайлович
  • Востриков Алексей Владимирович
  • Волков Александр Максимович
  • Иноземцев Александр Александрович
  • Гришечкин Александр Иванович
  • Перевозов Алексей Сергеевич
RU2623540C1
Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него 2018
  • Каблов Евгений Николаевич
  • Сидоров Виктор Васильевич
  • Мин Павел Георгиевич
  • Вадеев Виталий Евгеньевич
  • Ечин Александр Борисович
RU2684000C1
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2022
  • Мин Павел Георгиевич
  • Князев Андрей Евгеньевич
  • Вадеев Виталий Евгеньевич
  • Мин Максим Георгиевич
  • Антипов Владислав Валерьевич
  • Бакрадзе Михаил Михайлович
  • Дядько Кирилл Владимирович
RU2794497C1
ЖАРОПРОЧНЫЙ СВАРИВАЕМЫЙ СПЛАВ НА ОСНОВЕ КОБАЛЬТА И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2015
  • Каблов Евгений Николаевич
  • Ахмедзянов Максим Вадимович
  • Овсепян Сергей Вячеславович
  • Мазалов Иван Сергеевич
  • Ломберг Борис Самуилович
  • Расторгуева Ольга Игоревна
  • Князев Денис Михайлович
RU2601720C1
Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него 2018
  • Каблов Евгений Николаевич
  • Сидоров Виктор Васильевич
  • Каблов Дмитрий Евгеньевич
  • Мин Павел Георгиевич
  • Вадеев Виталий Евгеньевич
RU2672463C1
СПОСОБ ПРОИЗВОДСТВА ЛИТЕЙНЫХ ЖАРОПРОЧНЫХ СПЛАВОВ НА ОСНОВЕ НИКЕЛЯ (ВАРИАНТЫ) 2007
  • Каблов Евгений Николаевич
  • Сидоров Виктор Васильевич
  • Ригин Вадим Евгеньевич
RU2344186C2

Иллюстрации к изобретению RU 2 620 405 C1

Реферат патента 2017 года СПЛАВ НА ОСНОВЕ ХРОМА И СПОСОБ ВЫПЛАВКИ СПЛАВА

Изобретение относится к области металлургии и может быть использовано для изготовления деталей, работающих при высоких температурах. Для повышения сопротивления ползучести и увеличения длительной прочности при 900-1100°C за счет повышения сопротивления зернограничному проскальзыванию сплав на основе хрома содержит, мас. %: никель 31,0-33,0, вольфрам 1,0-3,0, ванадий 0,1-0,4, титан 0,05-0,3, тантал 0,05-0,2, ниобий 0,05-0,2, гафний 0,05-0,2, цирконий до 0,05, примеси, каждая: азот 0,03, кислород 0,04, углерод 0,06, (алюминий + кремний) 0,2. Выплавку указанного сплава проводят в вакуумной печи с использованием шихты, состоящей из чистых исходных материалов, с разливкой в подогретые изложницы и охлаждением изложниц с расплавом с заданной скоростью. 2 н.п. ф-лы, 3 ил., 3 табл.

Формула изобретения RU 2 620 405 C1

1. Сплав на основе хрома, содержащий никель, вольфрам, ванадий, титан, хром и примеси, отличающийся тем, что он дополнительно содержит тантал, ниобий, цирконий и гафний при следующем соотношении компонентов, мас. %:

никель 31,0-33,0 вольфрам 1,0-3,0 ванадий 0,1-0,4 титан 0,05-0,3 тантал 0,05-0,2 ниобий 0,05-0,2 гафний 0,05-0,2 цирконий до 0,05 примеси: азот не более 0,03 кислород не более 0,04 углерод не более 0,06 алюминий + кремний не более 0,2 хром остальное

2. Способ выплавки сплава на основе хрома по п. 1, включающий загрузку шихты, состоящей из чистых исходных материалов, через дозаторы в тигель вакуумной печи, герметизацию и вакуумирование камеры печи до остаточного давления 0,133 Па (10-3 мм рт. ст.), дегазацию шихты путем ее нагрева до 800°C со скоростью 5-7°C/мин, а затем от 800 до 1300°C со скоростью 10-12°C/мин, подачу в камеру печи аргона высокой чистоты под давлением 9-15 кПа для создания инертной атмосферы, нагрев шихты, содержащей никель, 1/2 часть хрома, вольфрам, тантал и ниобий, до 1620-1670°C с выдержкой до полного её расплавления, введение в расплав ванадия и оставшейся части хрома, выдержку 15-20 минут, снижение температуры до 1570-1600°C, введение в расплав микродобавок в следующей последовательности: гафний, цирконий, титан с выдержкой 1-3 минуты после введения каждой добавки, разливку металла с температуры расплава 1570±10°C в изложницы, подогретые до температуры 200-250°C, охлаждение с печью в среде инертного газа со скоростью не более 150°C/ч.

Документы, цитированные в отчете о поиске Патент 2017 года RU2620405C1

ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ ХРОМА И СПОСОБ ВЫПЛАВКИ СПЛАВА НА ОСНОВЕ ХРОМА 2014
  • Береснев Александр Германович
  • Бутрим Виктор Николаевич
  • Каширцев Валентин Николаевич
  • Адаскин Анатолий Матвеевич
RU2557438C1
СПЛАВ НА ОСНОВЕ ХРОМА 1991
  • Под'Ячев В.Н.
  • Воронин Г.М.
  • Савинова Н.И.
  • Баранова О.А.
  • Гудкова Т.С.
  • Каплин Ю.И.
  • Щербаков А.И.
  • Трофименко В.Н.
  • Кузин С.В.
  • Бабич Б.Н.
SU1818877A1
ЖЕЛЕЗО-ХРОМО-АЛЮМИНИЕВЫЙ СПЛАВ 2005
  • Хаттендорф Хайке
  • Кольб-Телипс Ангелика
RU2344192C2
СПЛАВ ДЛЯ РАСКИСЛЕНИЯ И ЛЕГИРОВАНИЯ ЖИДКОЙ ЗАГОТОВКИ ПРИ ВЫПЛАВКЕ НИЗКО- И СРЕДНЕУГЛЕРОДИСТОЙ ВЫСОКОЛЕГИРОВАННОЙ СТАЛИ 2004
  • Сулацков Виктор Иванович
  • Коврижных Александр Владимирович
  • Шаманов Александр Николаевич
  • Цыбулин Вячеслав Валерьевич
  • Камаев Андрей Николаевич
  • Сударенко Владимир Сергеевич
RU2267548C2
CN 102747262 A, 24.10.2012
JP 5271840 A, 19.10.1993.

RU 2 620 405 C1

Авторы

Бутрим Виктор Николаевич

Разумовский Игорь Михайлович

Каширцев Валентин Николаевич

Береснев Александр Германович

Трушникова Анна Сергеевна

Варламова Софья Борисовна

Мурашко Вячеслав Михайлович

Дембицкий Александр Марьянович

Панфилов Виталий Алексеевич

Адаскин Анатолий Матвеевич

Даты

2017-05-25Публикация

2016-03-24Подача