Способ определения местоположения точечного источника гамма-излучения на местности Российский патент 2017 года по МПК G01T1/00 

Описание патента на изобретение RU2620449C2

Изобретение относится к области выявления радиационной обстановки, а именно к способам поиска и обнаружения источников ионизирующего излучения (ИИИ), и предназначается для поиска точечных источников гамма-излучения.

Поиск и локализация точечных источников гамма-излучения большой активности является одной из важных задач при ликвидации последствий радиационных аварий. Это могут быть фрагменты конструктивных элементов ядерных реакторов, хранилищ радиоактивных отходов, отработанных тепловыделяющих элементов и другие малоразмерные радиоактивные объекты. Кроме того, известны случаи потери контроля над источниками ионизирующего излучения в результате несанкционированного захоронения, утери или хищения [1].

Известен способ определения положения точечного источника гамма-излучения. Его сущность заключается в том, что предварительно осуществляют измерения мощности дозы гамма-излучения в точках по периметру участка, внутри которого находится источник. Определяются точки с наименьшим, наибольшим и две со средними значениями мощности дозы. Затем намечаются два прямолинейных маршрута разведки, представляющих собой отрезки, соединяющие точку минимума мощности дозы с точками, где наблюдаются средние значения. В точках, лежащих на данных отрезках, проводятся измерения значений мощности дозы, строятся зависимости изменения мощности дозы вдоль маршрутов разведки. Используя установленные зависимости, на маршрутах определяются точки с максимальными значениями, и в этих точках строятся два перпендикуляра к соответствующим линиям маршрутов. Находится точка пересечения этих перпендикуляров, которая и указывает на положение источника ионизирующего излучения [1].

К недостаткам этого способа относится трудоемкость выполнения поиска и подготовка к нему. Также не исключен факт облучения дозиметриста, так как движение осуществляется вблизи ИИИ. Помимо этого возможны случаи поиска ИИИ на труднопроходимой местности, например в горах или болотах. При крупных радиационных авариях, таких как разрушение энергоблока атомной электростанции, поиск точечных источников на радиоактивно загрязненной местности займет продолжительное время с существенной опасностью для здоровья дозиметриста.

Известен еще один способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения. Способ заключается в регистрации излучения тремя детекторами, размещенными на платформе мобильного робота (MP). Один из блоков детектирования является поисковым и состоит из двух детекторов, разделенных экраном. Второй блок детектирования обнаружительный. Он представляет собой детектор, размещенный на манипуляторе MP [2].

Недостатком этого способа является продолжительное время поиска точечного ИИИ на большой по площади территории. Помимо этого на движение MP существенно влияет рельеф местности. Крупные складки местности и овраги полностью сковывают движение MP и затрудняют его управление.

В настоящее время для решения задач поиска и обнаружения источников гамма-излучения на вооружении соединений и воинских частей войск РХБ защиты, предназначенных для ликвидации последствий радиационных аварий, находится принятый на вооружение в 2000 году комплекс радиационной разведки и поиска ИИИ (КРПИ). Комплекс включает в себя аппаратуру воздушной и наземной радиационной разведки, которая монтируется на базе вертолета Ми-8 и БТР-80 [2]. Способ поиска и определения местоположения локальных источников гамма-нейтронного излучения, реализованный в данном комплексе, выбран в качестве прототипа, так как имеет наибольшее сходство с заявленным способом. Комплекс эффективен для поиска высокоактивных ИИИ на большой по площади территории. Технические характеристики вертолета не позволяют осуществлять спуск к поверхности земли для измерения мощности дозы. Аппаратура воздушной радиационной разведки не чувствительна к малоактивным ИИИ на большой высоте. Помимо этого существенным недостатком комплекса является высокая стоимость и большие массогабаритные характеристики.

Технический результат, достигаемый в заявленном изобретении, заключается в том, что координаты местонахождения точечного ИИИ определяются на труднодоступной местности без привлечения пилотируемых летательных аппаратов.

Указанный технический результат достигается тем, что определение координат местонахождения точечного ИИИ осуществляется с помощью целевой нагрузки, установленной на беспилотном летательном аппарате (БПЛА) вертолетного типа. Схема целевой нагрузки представлена на фигуре 1. Измерение мощности дозы в процессе полета осуществляется с помощью детектора гамма-излучения 1 с коллиматором 2 в виде круговой щели конической формы. Таким образом, в детектор может попадать излучение с участка местности в форме кольца, как показано на фигуре 2. Измерения проводят в три последовательные стадии. При проведении измерений на первой стадии БПЛА с целевой нагрузкой осуществляет вертикальный подъем с заданной точки на земле до достижения высоты, на которой срабатывает датчик обнаружения излучения. При подъеме БПЛА сканирует участок земной поверхности по расширяющимся концентрическим кольцам. При увеличении высоты полета радиус кольца увеличивается пропорционально. В случае регистрации резкого повышения мощности дозы фиксируется высота нахождения БПЛА и с помощью геометрических построений определяется кольцо на местности с центром в точке взлета, которое в свою очередь проходит через точку, где находится источник. В дальнейшем, для определения местоположения точечного источника проводится вторая стадия измерений, на которой БПЛА осуществляет полет по вертикальной траектории над точкой, выбранной произвольно внутри первого кольца с повторением всех операций первой стадии. В результате осуществления второго полета строится второе кольцо, также проходящее через источник. Точки пересечения двух колец, как показано на фигуре 3, являются точками вероятного нахождения источника. Для окончательного определения, в какой из двух точек находится источник, достаточно подлета на низкой высоте к одной из них и установления факта наличия или отсутствия в ней источника.

Описанный способ также может быть реализован на равномерной радиоактивно загрязненной местности (РЗМ). В этом случае при отсутствии ИИИ результаты измерений будут изменяться в соответствии с зависимостью мощности дозы от высоты, которая показана на фигуре 4. Указанная зависимость описывается формулой 1.

где P - мощность дозы, измеренная детектором при нахождении на высоте h от радиоактивно загрязненной местности, Р/ч;

k - постоянная, зависящая от единиц измерений. В случае когда плотность загрязнения σ измеряется в МэВ/(см2⋅с) и рассматривается экспозиционная мощность дозы в Р/ч, то k=5,0910-2 Р⋅см3⋅с/(ч⋅МэВ);

σ - поверхностная плотность загрязнения местности, МэВ/(см2⋅с);

σa, μ - линейные коэффициенты поглощения и рассеяния γ-излучения в воздухе, соответственно, см-1;

r - радиус кольца, см;

h - высота положения детектора, см;

E - начальная энергия γ-квантов, МэВ;

b - ширина кольца, см.

В случае наличия на исследуемом участке РЗМ точечного источника, детектор зарегистрирует превышение мощности дозы, которое не соответствует зависимости, описанной формулой 1. На графике момент регистрации ИИИ будет соответствовать точке экстремума, как показано на фигуре 5.

Определение местоположения точечного источника на равномерной РЗМ осуществляется аналогично алгоритму, описанному выше.

Предлагаемое техническое решение позволяет осуществлять оперативный поиск точечного источника ионизирующего излучения на большой по площади территории с относительно невысокими материальными затратами.

Предлагаемое изобретение поясняется следующими чертежами.

На фигуре 1 представлена схема целевой нагрузки на БПЛА, где

1 - детектор гамма-излучения;

2 - коллиматор.

На фигуре 2 представлена схема сканирования участка местности.

На фигуре 3 представлена схема определения местоположения ИИИ.

На фигуре 4 представлен график зависимости мощности дозы от высоты нахождения детектора на равномерной радиоактивно загрязненной местности.

На фигуре 5 представлен график зависимости мощности дозы от высоты нахождения детектора на равномерной радиоактивно загрязненной местности с точечным источником.

СПИСОК ЛИТЕРАТУРЫ

1. Пат. 2481597 Российская Федерация, МПК G01T 1/169. Способ определения положения точечного источника гамма-излучения [Текст] / Быков А.В., Васильев А.В., Садовников Р.Н., Тырышкин С.Н.; заявитель и патентообладатель Федеральное бюджетное учреждение «33 ЦНИИИ» МО РФ / публикация патента 10.05.2013 г.

2. Пат. 2195005 Российская Федерация, МПК G01T 1/169. Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения [Текст] / Соловых С.Н., Алимов Н.И., Перевозчиков А.Н.; Глухов Ю.А.; Андриевский Э.Ф.; заявитель и патентообладатель воинская часть 61469 / публикация патента 29.12.2002 г.

3. Министерство обороны РФ. Приказ №569. О принятии на снабжение ВС РФ комплекса радиационной разведки и поиска ионизирующих источников КРПИ [Текст]: приказ утвержден первым заместителем МО РФ 1 декабря 2000 года. - М.: МО РФ, 2000. - 3 с.

Похожие патенты RU2620449C2

название год авторы номер документа
Способ автоматического определения местоположения точечного источника гамма-излучения на местности 2016
  • Кулагин Иван Юрьевич
  • Глухов Юрий Александрович
  • Садовников Роман Николаевич
  • Васильев Алексей Вениаминович
  • Быков Алексей Владимирович
  • Кожевников Дмитрий Андреевич
  • Егоров Юрий Дмитриевич
RU2620451C1
Способ определения местоположения точечного источника гамма-излучения на местности 2019
  • Иноземцев Валерий Александрович
  • Кулагин Иван Юрьевич
  • Садовников Роман Николаевич
  • Абаева Ксения Сергеевна
  • Васильев Алексей Вениаминович
  • Лукоянов Дмитрий Иванович
  • Быков Алексей Владимирович
  • Румянцев Сергей Олегович
  • Кожевников Дмитрий Андреевич
RU2698496C1
СПОСОБ ВЫЯВЛЕНИЯ ФАКТИЧЕСКОЙ РАДИАЦИОННОЙ ОБСТАНОВКИ ДИСТАНЦИОННЫМ МЕТОДОМ С ВЕРТИКАЛЬНОЙ ТРАССЫ СКАНИРОВАНИЯ 2010
  • Соловых Сергей Николаевич
  • Ткачук Юлиан Вячеславович
RU2449318C1
БЛОК ДЕТЕКТИРОВАНИЯ ГАММА-ИЗЛУЧЕНИЯ В СОСТАВЕ БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ ЛЕГКОГО КЛАССА 2013
  • Власенко Андрей Николаевич
  • Лапин Олег Евгеньевич
  • Первишко Александр Филиппович
  • Аркадьев Виктор Борисович
RU2565335C2
СПОСОБ НАТУРНЫХ РАДИАЦИОННЫХ ИСПЫТАНИЙ ТЕХНИЧЕСКИХ СРЕДСТВ РАДИАЦИОННОЙ РАЗВЕДКИ С ИСПОЛЬЗОВАНИЕМ РАВНОМЕРНОГО ПОЛЯ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ 2009
  • Ткаченко Сергей Александрович
  • Васильев Алексей Вениаминович
  • Садовников Роман Николаевич
RU2413960C1
Способ ведения воздушной радиационной разведки местности с использованием беспилотного летательного аппарата вертолетного типа 2016
  • Кожевников Дмитрий Андреевич
  • Садовников Роман Николаевич
  • Лукоянов Дмитрий Иванович
  • Быков Алексей Владимирович
  • Румянцев Сергей Олегович
  • Кулагин Иван Юрьевич
RU2620333C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ ТОЧЕЧНОГО ИСТОЧНИКА ГАММА-ИЗЛУЧЕНИЯ 2011
  • Быков Алексей Владимирович
  • Васильев Алексей Вениаминович
  • Садовников Роман Николаевич
  • Тырышкин Сергей Николаевич
RU2481597C1
СПОСОБ ПОИСКА И ОПРЕДЕЛЕНИЯ КООРДИНАТ ИСТОЧНИКОВ ГАММА-ИЗЛУЧЕНИЯ 2011
  • Лапин Олег Евгеньевич
  • Власенко Андрей Николаевич
  • Демченков Владимир Павлович
  • Первишко Александр Филиппович
RU2471205C2
Способ определения параметров аварийного радиационного источника по данным воздушной радиационной разведки местности 2021
  • Байдуков Александр Кузьмич
  • Кузнецова Юлия Алексеевна
  • Кобцев Дмитрий Юрьевич
  • Сафронова Анна Владимировна
  • Шабунин Сергей Иванович
RU2755604C1
СПОСОБ ОБУЧЕНИЯ ОПЕРАТОРА ПОИСКУ И ИДЕНТИФИКАЦИИ РАДИОАКТИВНО-ЗАГРЯЗНЁННОЙ МЕСТНОСТИ 2016
  • Веснибалоцкий Игорь Олегович
  • Горин Николай Владимирович
  • Казанцев Лев Львович
  • Кандиев Ядгар Закирович
  • Кузьмин Александр Витальевич
  • Чуриков Юрий Иванович
  • Юсупов Ринат Искандарович
RU2619364C1

Иллюстрации к изобретению RU 2 620 449 C2

Реферат патента 2017 года Способ определения местоположения точечного источника гамма-излучения на местности

Изобретение относится к области выявления радиационной обстановки, а именно к способам поиска и обнаружения источников ионизирующего излучения (ИИИ), и предназначается для поиска точечных источников гамма-излучения. Способ определения местоположения точечного источника гамма-излучения на местности заключается в измерении мощности дозы гамма-излучения в процессе полета, при этом измерения осуществляются детектором гамма-излучения с коллиматором в виде круговой щели конической формы, размещенным на базе беспилотного летательного аппарата, в три последовательные стадии: вертикальный подъем аппарата с заданной точки на земле до достижения высоты, на которой срабатывает датчик обнаружения излучения, с последующим проведением геометрического определения участка в форме кольца с центром в точке взлета; второй подъем с любой точки внутри первого кольца с повторением всех операций первой стадии и геометрическим определением точек пересечения обоих колец; подлет на малой высоте к одной из точек, определенных на второй стадии, для точного определения местоположения источника на местности. Технический результат – повышение оперативности поиска точечного источника ионизирующего излучения на большой по площади территории. 5 ил.

Формула изобретения RU 2 620 449 C2

Способ определения местоположения точечного источника гамма-излучения на местности, заключающийся в измерении мощности дозы гамма-излучения в процессе полета, отличающийся тем, что измерения осуществляются детектором гамма-излучения с коллиматором в виде круговой щели конической формы, размещенным на базе беспилотного летательного аппарата, в три последовательные стадии: вертикальный подъем аппарата с заданной точки на земле до достижения высоты, на которой срабатывает датчик обнаружения излучения, с последующим проведением геометрического определения участка в форме кольца с центром в точке взлета; второй подъем с любой точки внутри первого кольца с повторением всех операций первой стадии и геометрическим определением точек пересечения обоих колец; подлет на малой высоте к одной из точек, определенных на второй стадии, для точного определения местоположения источника на местности.

Документы, цитированные в отчете о поиске Патент 2017 года RU2620449C2

СПОСОБ ВЫЯВЛЕНИЯ ФАКТИЧЕСКОЙ РАДИАЦИОННОЙ ОБСТАНОВКИ ДИСТАНЦИОННЫМ МЕТОДОМ С ВЕРТИКАЛЬНОЙ ТРАССЫ СКАНИРОВАНИЯ 2010
  • Соловых Сергей Николаевич
  • Ткачук Юлиан Вячеславович
RU2449318C1
СПОСОБ ОБНАРУЖЕНИЯ ОПАСНОГО РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ МЕСТНОСТИ 2013
  • Мозжилкин Александр Владимирович
  • Садовников Роман Николаевич
  • Васильев Алексей Вениаминович
RU2549610C1
WO 2014140536 A1, 18.09.2014
US 8409524 B2, 02.04.2013.

RU 2 620 449 C2

Авторы

Садовников Роман Николаевич

Кулагин Иван Юрьевич

Кожевников Дмитрий Андреевич

Васильев Алексей Вениаминович

Глухов Юрий Александрович

Румянцев Сергей Олегович

Даты

2017-05-25Публикация

2015-10-06Подача