Изобретение относится к области экспериментальной аэродинамики, в частности к вакуумным аэродинамическим установкам, обеспечивающим моделирование условий полета летательных аппаратов (ЛА) в верхних слоях атмосферы и в космическом пространстве, и может быть использовано для получения гиперзвукового потока газа с большими числами Маха в лабораторных условиях.
Проведение натурных испытаний в лабораториях для изучения возможного поведения реальных гиперзвуковых летательных аппаратов (ГЛА) и с получением в результате достоверных данных связано с большими трудностями. Даже если соблюдаются все условия принципов подобия из-за того, что испытания проводятся в ограниченных объемах, существенным становится влияние самого инструмента исследования, отрицательно влияющего на достоверность. Одним из таких факторов является нарушение однородности газового потока внутри трубы из-за наличия стенок и возникновения турбулентностей в приграничных к стенкам областях.
Известна импульсная аэродинамическая труба (RU 2439523 [1]) для получения рабочего газа с предельно высокими параметрами торможения потока. Труба содержит форкамеру с электродами, отделенную от газодинамического тракта трубы диафрагмой, и поршень, образующий дифференциальный мультипликатор, надпоршневое пространство которого соединено с источником толкающего газа, а подпоршневое заполнено демпфирующей жидкостью и соединено с дренированной емкостью. Также труба снабжена компенсатором динамической составляющей мультипликатора, быстродействующим клапаном запуска системы стабилизации, контактирующим через поршень мультипликатора с полостью форкамеры. Корпус мультипликатора выполнен с возможностью разъема и при этом его надпоршневое пространство связано с ресивером толкающего газа через быстродействующий клапан запуска системы стабилизации, а подпоршневое пространство через гидравлический канал - с регулируемой длиной с подпоршневым пространством компенсатора динамической составляющей мультипликатора. Форкамера снабжена стыковочным узлом и обратным клапаном для подключения соответственно импульсного высокоэнтальпийного адиабатического генератора и блока подачи смеси реагирующих газов и содержит устройство принудительного вскрытия диафрагмы, размещенное на выходе из форкамеры.
Недостатком известного устройства является сложность ее эксплуатации. Кроме того, оно не обеспечивает достаточно высокую точность воспроизведения натурных испытаний из-за возникновения возмущенных потоков вблизи стенок трубы.
Достаточно близкой к заявляемой гиперзвуковой ударной аэродинамической трубе по достигаемому результату является ударная труба для формирования цуга воздушных ударных волн, известная из RU 2488085 [2]. Генератор ударной волны выполнен в виде перфорированного диска и мембраны, размещенных в волноводе с возможностью перемещения вдоль него, установленного на торце волновода магазина с пиромеханическими толкателями, расположенными в нем в ряд в вертикальной плоскости и снабженными подвижными звеньями, упора и возвратной пружины.
Перфорированный диск с тыльной стороны снабжен штоком, поочередно контактирующим с подвижными звеньями пиромеханических толкателей. Мембрана размещена перед диском по направлению к выходу из волновода с возможностью фиксации ее исходного положения относительно диска и изменения расстояния между ними. При этом она соединена механическими связями, симметрично проходящими через перфорационные отверстия в диске, с одним концом возвратной пружины, другой конец которой соединен с неподвижной опорой. Магазин установлен в направляющих на торце волновода с возможностью перемещения по ним вниз под собственным весом до совпадения осей штока диска и подвижного звена очередного пиромеханического толкателя. Упор установлен на одной из направляющих и выполнен с возможностью ограничения перемещения магазина до срабатывания очередного толкателя. Шток диска со стороны магазина может быть снабжен магнитной вставкой, а контактирующие с ним подвижные звенья пиромеханических толкателей при этом выполнены из ферромагнитного материала. Мембрана может быть выполнена многослойной.
Технический результат заключается в возможности проведения в лабораторных условиях исследований реакции различных объектов на воздействие формируемых через заданные интервалы времени воздушных ударных волн. Воздушная ударная волна, пробегая по каналу волновода, нагружает исследуемый объект и продолжает движение до волногасителя, который исключает ее отражение и компенсирует влияние атмосферы. Производя повторные пуски ударной трубы через установленные интервалы времени, получают цуг воздействующих на испытываемый объект воздушных ударных волн.
Недостатком известного устройства является то, что оно не обеспечивает проведение испытаний исследуемого объекта воздействием на него гиперзвукового потока газа с несколькими различными числами Маха за один эксперимент. Кроме того, оно не обеспечивает достаточно высокую точность воспроизведения натурных испытаний из-за возникновения возмущенных потоков вблизи стенок трубы.
Изобретением, описанным в RU 2103667 [4], решается задача уменьшения толщины ПС при существенно меньших искажениях потока. Это достигается тем, что обтекаемую поверхность, например аэродинамическое сопло и/или модель, помещают в герметичную камеру, из которой откачивают газ до давлений, меньших давления насыщенных паров рабочего газа над его конденсатом, охлаждают обтекаемые газом поверхности сопла и модели до температур ниже температуры конденсации рабочего газа, осуществляют напуск газа и конденсируют пограничный слой газа на охлажденных поверхностях. Однако такое решение представляется достаточно сложным конструктивно и требует значительных затрат при проведении экспериментов.
В RU 2482457 [5] описывается вакуумная гиперзвуковая аэродинамическая труба, содержащая источник газа высокого давления с системой регулирования давления, подогреватель газа, гиперзвуковое сопло, рабочую часть, диффузор, систему охлаждения газа после прохождения рабочей части, вакуумную камеру, насосы предварительной и окончательной откачки газа из вакуумной камеры. Аэродинамическая труба содержит криогенные насосы как для предварительной, так и для окончательной откачки, причем криопанели насосов выполнены из пористого металла с открытой системой пор, а внешняя поверхность гиперзвукового сопла внутри рабочей части аэродинамической трубы снабжена змеевиками для охлаждения стенок сопла. Система охлаждения высокотемпературного газа, поступающего из рабочей части, размещена внутри вакуумной камеры. Кроме того, аэродинамическая труба содержит резервуар жидкого газа с насосом для перекачки и детандерно-генераторные агрегаты для получения электроэнергии.
За счет этого обеспечивается увеличение скорости откачки газа, уменьшение толщины пограничного слоя в сопле и, как следствие, увеличение масштаба исследуемых моделей при неизменных геометрических параметрах выходного сечения сопла. Однако и такое решение представляется достаточно сложным конструктивно и требует значительных затрат при проведении экспериментов.
Известно устройство для повышения однородности газового потока в гиперзвуковом сопле, используемом в аэродинамической трубе, которое позволяет частично решить проблему с влиянием пограничного слоя на однородность потока (CN 102998084 [6]). Устройство представляет собой гиперзвуковую аэродинамическую трубу, в сужающейся части сопла которой установлены средства для удаления части воздушного потока из пристеночных областей.
Тем не менее, полностью устранить неоднородности в газовом потоке не удается, т.к. удаление части газового потока осуществляется перед горловиной сопла, а в расширяющейся его части неоднородности снова воспроизводятся.
Наиболее близкой по своей технической сущности и совокупности существенных признаков является известная гиперзвуковая ударная аэродинамическая труба из RU 152348 U [7]. Гиперзвуковая ударная аэродинамическая труба содержит образующие общий канал и последовательно между собой соединенные камеру высокого давления, цилиндрический канал и гиперзвуковое сопло, выходящее в вакуумную камеру, средство перекрытия канала, установленное между камерой высокого давления и цилиндрическим каналом, и регистрирующую аппаратуру.
Недостатком известного устройства является то, что оно не обеспечивает достаточно высокую точность воспроизведения натурных испытаний из-за возникновения возмущенных потоков вблизи стенок трубы в области размещения моделей ГЛА.
Заявляемая гиперзвуковая ударная аэродинамическая труба направлена на повышение достоверности данных, получаемых при исследовании моделей гиперзвуковых летательных аппаратов в лабораторных исследованиях.
Указанный результат достигается тем, что гиперзвуковая ударная аэродинамическая труба содержит образующие общий канал, последовательно между собой соединенные камеру высокого давления, цилиндрический канал и гиперзвуковое сопло, выходящее в вакуумную камеру, средства перекрытия канала, установленные между камерой высокого давления и цилиндрическим каналом и между цилиндрическим каналом и входом в сопло, и регистрирующую аппаратуру. При этом концевая часть сопла снабжена выполненными в его стенке и выходящими внутрь сопла каналами, объемы которых внутри стенки соединены между собой и через управляемый клапан с источником вакуума более высоким, чем в вакуумной камере.
Указанный результат достигается также тем, что выходящие внутрь сопла каналы выполнены под углами α=20....90° к его внутренней поверхности.
Отличительными от прототипа признаками являются:
- снабжение концевой части сопла выполненными в его стенках и выходящими внутрь сопла каналами, объемы которых соединены между собой и через управляемый клапан с источником вакуума более высоким, чем в вакуумной камере.
- выходящие внутрь сопла каналы выполнены под углами α=20....90° к его внутренней поверхности.
Снабжение концевой части сопла выполненными в его стенках и выходящими внутрь сопла каналами, объемы которых соединены между собой и с источником вакуума, более высоким, чем в вакуумной камере, обеспечивает повышение достоверности данных, получаемых при исследовании моделей гиперзвуковых летательных аппаратов в лабораторных исследованиях, за счет улучшения однородности газового потока по всему сечению трубы путем исключения турбулентности в приграничных к стенкам трубы объемах.
Действительно, в устройстве, выбранном за прототип, происходит следующее. При инициации ударной волны путем вскрытия средства перекрытия канала, установленного между камерой высокого давления и цилиндрическим каналом, ударная волна, тормозящая у входного отверстия в сопло, вскрывает второе средство перекрытия канала и часть газового потока истекает из гиперзвукового сопла, которое имеет сначала сужающуюся часть (критическое сечение), а затем расширяющуюся, со все более увеличивающимся пограничным слоем. Истекающий из сопла газовый поток не равномерный и не параллельный в выходном сечении. Это приводит к «бочкообразности» истекающего на модель потока и модель, расположенная на расстоянии от сопла, может оказаться в области трансзвуковых течений, в нерасчетном режиме.
В предлагаемом устройстве в момент подхода ударной волны к критическому сечению сопла управляющий клапан подключает источник более высокого вакуума к объему каналов в стенке сопла у его концевой части. Пограничный слой всасывается и в результате не нарушается параллельность истекающего потока на модель.
Наиболее оптимальным представляется выполнение выходящих внутрь сопла каналов под углами α=20....90° к его внутренней поверхности. Угол α=90° проще выполнить технологически, но отсос пограничного слоя будет меньше, чем α=20°, при котором «захват» пограничного слоя больше. Угол α≤20° сложно выполнить технологически и «захват» пограничного слоя уменьшается при достаточно большой его толщине.
Сущность заявляемой гиперзвуковой ударной аэродинамической трубы поясняется примером реализации и чертежами.
На фиг. 1 представлена принципиальная схема гиперзвуковой ударной аэродинамической трубы. На фиг. 2 представлено продольное сечение концевой части сопла с выполненными в его стенках и выходящими внутрь сопла каналами. При этом на фиг 2-а и 2-б каналы расположены под разными углами к внутренней поверхности сопла.
Гиперзвуковая ударная аэродинамическая труба содержит образующие общий канал, последовательно между собой соединенные камеру высокого давления 1, цилиндрический канал 2, вакуумную камеру 3 и установленное в ней гиперзвуковое сопло 4 с отверстием 5, площадь которого составляет не более 1% площади выходного сечения цилиндрического канала трубы. Камера высокого давления 1 снабжена манометром 6. Между камерой высокого давления 1 и цилиндрическим каналом 2 установлено средство перекрытия канала 7 в виде мембраны, а между цилиндрическим каналом и соплом - мембрана 8. Труба снабжена высокочастотными датчиками 9, 10, 11, 12 динамического давления, размещенными в камере высокого давления 1, в цилиндрическом канале 2, вакуумной камере 3.
Вакуумная камера снабжена оптическими стеклами 13, вмонтированными в стенках вакуумной камеры в области расположения кронштейнов 14 для закрепления моделей. Датчики соединены с регистрирующей аппаратурой. В качестве таковой используются подключенные к датчикам аналого-цифровые преобразователи 15, выходы которых подключены к компьютеру 16. Труба снабжена скоростной видеокамерой 17, выход которой соединен с регистрирующей аппаратурой, а объектив связан оптически с окном. Высоковакуумные насосы (откачные посты), системы смешивания и наполнения газов, необходимые для функционирования трубы, не показаны. В теле гиперзвукового сопла 4 (в его концевой части) выполнены выходящие внутрь сопла каналы 18 (на чертеже показано сечение одного канала, но их может быть до нескольких десятков), объемы которых соединены между собой кольцевой проточкой 19, изолированные от внешней среды с помощью упругой (резиновой) прокладки 20, закрепленной на сопле хомутом. Внутренний объем проточки 19 и каналов 18 соединен через штуцер 21 с источником вакуума (на чертеже не показан) более высоким, чем в вакуумной камере 3.
Работает предложенное устройство следующим образом. Сначала откачиваются все камеры, разделенные мембранами 7 и 8. Цилиндрический канал 2 откачивается до давления, например, 1…100 мбар. Вакуумная камера 3 откачивается до вакуума не ниже, например, 10-4 мбар (при натекании вакуума не хуже 10-3 мбар/мин). Источник вакуума для каналов 18 откачивается до вакуума не ниже 10-5 мбар.
Далее камера высокого давления 1 заполняется смесью толкающих газов, цилиндрический канал заполняется смесью рабочих газов.
Инициация ударной волны происходит известным способом - повышением давления в камере высокого давления 1. Далее рвется первая мембрана 7 и ударная волна устремляется по цилиндрическому каналу к гиперзвуковому соплу 4. При разрыве второй мембраны 8 на торце гиперзвукового сопла часть ударной волны отражается от входа гиперзвукового сопла, другая часть проходит через гиперзвуковое сопло и высокоскоростной поток истекает из гиперзвукового сопла на модели.
Часть ударной волны, выходящей из сопла, обтекает модели на заданной (гиперзвуковой) скорости. Современные высокоскоростные видеокамеры регистрируют обтекания моделей со скоростью, например, 2000 кадров/с. Время регистрации гиперзвукового обтекания - единицы миллисекунд.
При подходе ударной волны к критическому сечению сопла срабатывают высокочастотные датчики динамического давления, которые через аналого-цифровой преобразователь подают сигнал на управляющий клапан, который подключает источник более высокого вакуума к объему каналов в стенке сопла у его концевой части. Пограничный слой всасывается и не нарушает параллельность истекающего потока на модель.
название | год | авторы | номер документа |
---|---|---|---|
Ударная гиперзвуковая аэродинамическая труба | 2020 |
|
RU2735626C1 |
Импульсная аэродинамическая установка | 2023 |
|
RU2818485C1 |
Способ измерения температуры модели при вакуумировании в гиперзвуковом потоке | 2021 |
|
RU2773063C1 |
СПОСОБ СОЗДАНИЯ ПОТОКА ГАЗА В ГИПЕРЗВУКОВОЙ ВАКУУМНОЙ АЭРОДИНАМИЧЕСКОЙ ТРУБЕ И АЭРОДИНАМИЧЕСКАЯ ТРУБА | 2011 |
|
RU2482457C1 |
Способ увеличения рабочего времени ударной трубы и устройство для его реализации. | 2022 |
|
RU2788480C1 |
ИМПУЛЬСНАЯ АЭРОДИНАМИЧЕСКАЯ ТРУБА | 2010 |
|
RU2439523C1 |
СПОСОБ ПОЛУЧЕНИЯ УДАРНО СЖАТОГО СЛОЯ ПЛАЗМЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2014 |
|
RU2590893C1 |
УСТРОЙСТВО ВИХРЕВОГО ГАЗОВОГО КОМПРЕССОРА ДЛЯ КОМБИНИРОВАННОГО ВОЗДУШНО-РЕАКТИВНОГО ДВИГАТЕЛЯ | 2019 |
|
RU2766496C2 |
СПОСОБ УМЕНЬШЕНИЯ ТОЛЩИНЫ ПОГРАНИЧНОГО СЛОЯ ГАЗА НА ОБТЕКАЕМОЙ ПОВЕРХНОСТИ | 1994 |
|
RU2103667C1 |
АЭРОДИНАМИЧЕСКАЯ ТРУБА | 2010 |
|
RU2436058C1 |
Изобретение относится к области экспериментальной аэродинамики, в частности к вакуумным аэродинамическим установкам, обеспечивающим моделирование условий полета летательных аппаратов (ЛА) в верхних слоях атмосферы и в космическом пространстве, и может быть использовано для получения гиперзвукового потока газа с большими числами Маха в лабораторных условиях. Гиперзвуковая ударная аэродинамическая труба содержит образующие общий канал, последовательно между собой соединенные камеру высокого давления, цилиндрический канал и гиперзвуковое сопло, выходящее в вакуумную камеру, средства перекрытия канала, установленные между камерой высокого давления и цилиндрическим каналом и между цилиндрическим каналом и входом в сопло, и регистрирующую аппаратуру. При этом концевая часть сопла снабжена выполненными в его стенке и выходящими внутрь сопла каналами, объемы которых внутри стенки соединены между собой и через управляемый клапан с источником вакуума более высоким, чем в вакуумной камере. Технический результат заключается в повышении достоверности данных, получаемых при исследовании моделей гиперзвуковых летательных аппаратов в лабораторных исследованиях. 1 з.п. ф-лы, 2 ил.
1. Гиперзвуковая ударная аэродинамическая труба, содержащая образующие общий канал, последовательно между собой соединенные камеру высокого давления, цилиндрический канал и гиперзвуковое сопло, выходящее в вакуумную камеру, средства перекрытия канала, установленные между камерой высокого давления и цилиндрическим каналом и между цилиндрическим каналом и входом в сопло, и регистрирующую аппаратуру, отличающаяся тем, что концевая часть сопла снабжена выполненными в его стенке и выходящими внутрь сопла каналами, объемы которых внутри стенки соединены между собой и через управляемый клапан с источником вакуума более высоким, чем в вакуумной камере.
2. Гиперзвуковая ударная аэродинамическая труба по п. 1, отличающаяся тем, что выходящие внутрь сопла каналы выполнены под углами α=20.…90° к его внутренней поверхности.
RU 152348 U1, 20.05.2015 | |||
CN 102998084 A, 27.03.2013 | |||
ИМПУЛЬСНАЯ АЭРОДИНАМИЧЕСКАЯ УСТАНОВКА | 1983 |
|
SU1107634A1 |
СПОСОБ СОЗДАНИЯ ПОТОКА ГАЗА В ГИПЕРЗВУКОВОЙ ВАКУУМНОЙ АЭРОДИНАМИЧЕСКОЙ ТРУБЕ И АЭРОДИНАМИЧЕСКАЯ ТРУБА | 2011 |
|
RU2482457C1 |
СПОСОБ ФОРМИРОВАНИЯ ЦУГА ВОЗДУШНЫХ УДАРНЫХ ВОЛН И УДАРНАЯ ТРУБА ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2012 |
|
RU2488085C1 |
Авторы
Даты
2017-06-02—Публикация
2016-07-25—Подача