Способ определения критического коэффициента интенсивности напряжения бетона Российский патент 2017 года по МПК G01N3/24 

Описание патента на изобретение RU2621618C1

Изобретение относится к области строительства и может быть использовано в производственных и научных лабораториях для определения критического коэффициента интенсивности напряжения в образцах бетона, используемого, например, в железобетонных элементах зданий и сооружений.

Известен способ определения критического коэффициента напряжения в образце бетона [Rockmechanical - achallengeforsociety // Swets & Zeitlinger Lisse, 2001. Р. 165-166. ISBN 9026518218], заключающийся в том, что в образце-полуцилиндре сечением в полукруг выполняют зону концентрации напряжений, которую нагружают до разрушения и по полученным данным определяют критический коэффициент интенсивности напряжения, причем зоной концентрацией напряжения в образце является надрез в виде полукруга с противоположных концов образца. Образованную зону нагружают асимметрично с противоположных сторон до разрушения, после чего замеряют разрушающую нагрузку и параметры отломленного углового сегмента, а критический коэффициент интенсивности напряжения в образце определяют по формуле

(1)

где КIIС – критический коэффициент интенсивности напряжения, МПа·м0,5;

E – модуль упругости;

r – радиус образца в сечении, м;

– коэффициент Пуассона.

Недостатком данного способа является значительный разброс значений критического коэффициента интенсивности напряжения в исследуемом образце, сложность и трудоемкость образования зоны концентрации напряжения в образце.

Известен способ определения критического коэффициента интенсивности напряжения [Rockmechanical–achallengeforsociety // Swets & Zeitlinger Lisse, 2001. Р. 164. ISBN 9026518218], заключающийся в том, что в образце бетона прямоугольного сечения образуют зону концентрации напряжения, затем образец нагружают до разрушения по схеме центрального сжатия и по полученным данным определяют критический коэффициент интенсивности напряжения.

Недостатком данного способа является значительный разброс значений критического коэффициента интенсивности напряжения.

Задача, решаемая заявляемым способом, заключается в повышении точности и достоверности определения критического коэффициента интенсивности напряжения.

Технический результат, достигаемый при решении поставленной задачи, выражается в повышении точности и достоверности определения критического коэффициента интенсивности напряжения путем предварительного образования зон концентраций напряжения в образце бетона.

Поставленная задача решается тем, что способ определения критического коэффициента интенсивности напряжения бетона, заключающийся в том, что в образце-призме бетона до испытания по схеме центрального сжатия образуют зону концентрации напряжения, затем образец нагружают до разрушения и по результатам измерения вычисляют критический коэффициент интенсивности напряжения, отличается тем, что зона концентрации напряжения образуется путем нанесения двух симметричных надрезов на одной грани образца бетона, после чего образец нагружают до разрушения, замеряют разрушающую нагрузку и вычисляют критический коэффициент интенсивности напряжения по формуле

(2)

где Р – разрушающая нагрузка, MН; Y – поправочный коэффициент; t – ширина образца, м; H – расстояние от надреза до грани образца, м; l – глубина надреза l=b/4, здесь b –высота образца, м.

Сопоставительный анализ существенных признаков предлагаемого технического решения с существенными признаками аналогов и прототипа свидетельствуют о его соответствии критерию «новизна».

При этом отличительные признаки решают следующие функциональные задачи.

Признак, указывающий, что «...зона концентрации напряжения образуется путем нанесения двух симметричных надрезов на одной грани образца бетона…» указывает способ образования зон концентраций напряжения в образце и определяет дальнейшее развитие трещин по заданным направлениям в виде надрезов (инициаторов трещин) размером в четверть высоты образца, причем критический коэффициент интенсивности напряжения пропорционален размеру надрезов.

Признаки, указывающие, что «образец нагружают до разрушения, замеряют разрушающую нагрузку», позволяют определить величину разрушающей нагрузки.

Приведенная математическая формула позволяет определить критический коэффициент интенсивности напряжения.

На чертеже показана схема испытаний образца бетона, где обозначены образец-призма 1; надрезы 2; металлические пластины 3; плиты пресса 4.

Способ осуществляют следующим образом.

На образец-призму 1 бетона в возрасте 28 суток или более, хранившегося в нормальных условиях (п. 2.3.2 ГОСТ 10180-90), наносят инициаторы трещин в виде симметричных надрезов 2 глубиной l, определяемой из выражения l=b/4, где b – высота образца-призмы 1, с помощью режущих инструментов.

При испытании на центральное сжатие в соответствии с п. 5.2 ГОСТ 10180-90 образец-призму 1 устанавливают на нижнюю опорную плиту пресса 4 центрально относительно его продольной оси, причем грань с надрезами 2 контактирует с верхней опорной плитой пресса 4, с использованием рисок, нанесенных на нижнюю плиту пресса 4, и дополнительные стальные пластины 3 для более равномерной передачи усилия на образец-призму 1. Образец-призму 1 сжимают прессом 4.

Нагружение образца-призмы 1 при центральном сжатии осуществляют до момента разрушения и регистрируют значение силы Р. Значение критического коэффициента интенсивности напряжения на поперечный сдвиг КIIС определяют по формуле (2).

Явление концентрации напряжений объясняется тем, что усилия передаются по наиболее короткому пути, что обеспечивает минимум затрат внутренней энергии тела. В результате бетон, прилегающий к надрезу, воспринимает дополнительные усилия, передающиеся с материала, окружающего надрез. Значения критического коэффициента концентрации напряжений практически не зависят от уровня напряжений и физико-механических свойств бетона, а определяются геометрией образца, способом нагружения и относительными размерами зон концентрации.

При наличии концентрации напряжений существенно снижается деформация образца с концентратором по сравнению с деформацией гладкого образца, что связано с локализацией деформации у концентратора напряжений.

Поправочный коэффициент Y определяют по таблице 1.

Таблица 1. Определение поправочного коэффициента Y

H/t
l/b
0,37 0,25 0,12
0,1 1,2 1,1 1,07 0,2 1,26 0,99 0,9 0,3 1,3 0,95 0,76 0,4 1,32 0,95 0,65

Результаты испытаний приведены в таблице 2.

Таблица 2. Результаты испытаний образцов

№ образца Критический коэффициент интенсивности напряжения КIIC, МН/м3/2 в образце по прототипу заявляемый способ 1 5,34 5,82 2 5,60 5,81 3 5,70 5,77 Среднее 5,54 5,80

Результаты испытаний позволяют сделать вывод о том, что заявленный способ по сравнению с прототипом обеспечивает повышение точности определения критического коэффициента интенсивности напряжения в образце, упрощает выполнение подготовки образца к испытаниям, не требует использования дополнительных приборов, что уменьшает трудоемкость испытаний.

Заявляемый способ может найти применение в научных и производственных испытательных лабораториях для оценки долговечности бетонных конструкций.

Похожие патенты RU2621618C1

название год авторы номер документа
Способ определения критического коэффициента интенсивности напряжения бетона после воздействия на него высоких температур 2016
  • Леонович Сергей Николаевич
  • Литвиновский Дмитрий Андреевич
  • Ким Лев Владимирович
RU2621623C1
СПОСОБ ОПРЕДЕЛЕНИЯ КРИТИЧЕСКОГО КОЭФФИЦИЕНТА ИНТЕНСИВНОСТИ НАПРЯЖЕНИЯ В ИЗДЕЛИИ 2006
  • Варламов Андрей Аркадьевич
  • Круциляк Юрий Михайлович
  • Круциляк Михаил Михайлович
RU2324916C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ТРЕЩИНОСТОЙКОСТИ БЕТОНА В ИЗДЕЛИИ 2019
  • Шубин Игорь Любимович
  • Римшин Владимир Иванович
  • Варламов Андрей Аркадьевич
  • Давыдова Анастасия Михайловна
RU2725162C1
СПОСОБ ОЦЕНКИ РАЗРУШИТЕЛЬНЫХ СВОЙСТВ НАЛИВНЫХ ВЗРЫВЧАТЫХ ВЕЩЕСТВ 2012
  • Брагин Павел Александрович
  • Горинов Сергей Александрович
RU2519658C1
Способ определения критических параметров трещиностойкости конструкционных материалов 1990
  • Курилкин Борис Викторович
  • Гадалин Николай Иванович
  • Смеляков Евгений Петрович
  • Тарасов Юрий Леонидович
  • Мягких Валерий Иванович
SU1753336A1
Образец для создания напряженно-деформированного состояния элементов конструкций 1990
  • Ерусалимский Юрий Зиновьевич
SU1777034A1
Призматический образец для определения вязкости разрушения материала 1984
  • Трощенко Валерий Трофимович
  • Ясний Петр Владимирович
  • Покровский Владимир Викторович
SU1182324A1
Способ определения динамической трещиностойкости 1987
  • Колесников Юрий Васильевич
SU1499163A1
Способ определения прочности материала на срез 1990
  • Ерусалимский Юрий Зиновьевич
SU1744574A1
Способ испытания материала на трещиностойкость 1988
  • Трощенко Валерий Трофимович
  • Ясний Петр Владимирович
  • Покровский Владимир Викторович
  • Токарев Павел Васильевич
SU1562749A1

Иллюстрации к изобретению RU 2 621 618 C1

Реферат патента 2017 года Способ определения критического коэффициента интенсивности напряжения бетона

Изобретение относится к области строительства и может быть использовано в научных и производственных лабораториях для определения критического коэффициента интенсивности напряжения в образцах бетона, используемого, например, в железобетонных элементах зданий и сооружений. Сущность: в образце-призме бетона создают зону концентрации напряжения путем нанесения двух симметричных надрезов на одной грани образца бетона, после чего образец нагружают до разрушения, замеряют разрушающую нагрузку и определяют критический коэффициент интенсивности напряжения по формуле

где Р – разрушающая нагрузка, MН; Y – поправочный коэффициент; t – ширина образца, м; H – расстояние от надреза до грани образца, м; l – глубина надреза l=b/4, здесь b – высота образца, м. Технический результат: повышение точности и достоверности определения критического коэффициента интенсивности напряжения путем образования зон концентраций напряжения в виде надрезов. 1 ил., 2 табл.

Формула изобретения RU 2 621 618 C1


     Способ определения критического коэффициента интенсивности напряжения бетона, заключающийся в том, что в образце-призме бетона до испытания по схеме центрального сжатия образуют зону концентрации напряжения, затем образец нагружают до разрушения и по результатам измерения вычисляют критический коэффициент интенсивности напряжения, отличающийся тем, что зона концентрации напряжения образуется путем нанесения двух симметричных надрезов на одной грани образца бетона, после чего образец нагружают до разрушения, замеряют разрушающую нагрузку и вычисляют критический коэффициент интенсивности напряжения по формуле

где Р – разрушающая нагрузка, MН; Y – поправочный коэффициент; t – ширина образца, м; H – расстояние от надреза до грани образца, м; l – глубина надреза l=b/4, здесь b – высота образца, м.

Документы, цитированные в отчете о поиске Патент 2017 года RU2621618C1

СПОСОБ ОПРЕДЕЛЕНИЯ КРИТИЧЕСКОГО КОЭФФИЦИЕНТА ИНТЕНСИВНОСТИ НАПРЯЖЕНИЯ В ИЗДЕЛИИ 2006
  • Варламов Андрей Аркадьевич
  • Круциляк Юрий Михайлович
  • Круциляк Михаил Михайлович
RU2324916C1
Способ удаления газов из питательной для паровых котлов воды 1927
  • Варганов В.А.
SU16193A1
Образец для определения коэффициента интенсивности напряжений 1978
  • Панасюк Владимир Васильевич
  • Харин Виктор Серафимович
  • Чапля Михаил Эмильевич
  • Ковчик Степан Евстафьевич
  • Андрейков Александр Евгеньевич
SU777539A1
US 3983745 A1, 05.10.1976.

RU 2 621 618 C1

Авторы

Леонович Сергей Николаевич

Литвиновский Дмитрий Андреевич

Ким Лев Владимирович

Даты

2017-06-06Публикация

2016-06-17Подача