СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ТРЕЩИНОСТОЙКОСТИ БЕТОНА В ИЗДЕЛИИ Российский патент 2020 года по МПК G01N3/60 

Описание патента на изобретение RU2725162C1

Изобретение относится к области строительства.

Известен способ определения прочности тяжелых и легких бетонов, заключающийся в скалывании ребра изделия путем прикладывания нагрузки к ребру изделия, фиксации величины нагрузки в момент скола ребра и последующее измерение фактической глубины скалывания (см. ГОСТ 22690-88 "Бетоны. Определение прочности механическими методами неразрушающего контроля" / Введен: 01.01.91; с. 8).

Недостатком данного способа является низкая точность и достоверность определения критического коэффициента интенсивности напряжений исследуемого материала в результате того, что во время испытаний в зоне скола возникают касательные напряжения вдоль линии действия силы, которые искажают точность и достоверность определения критического коэффициента интенсивности напряжений.

Известен способ определения критического коэффициента интенсивности напряжений, заключающийся в том, что в образце прямоугольного сечения выполняют зону концентраций напряжений, которую нагружают до разрушения, после чего по полученным данным определяют критический коэффициент интенсивности напряжений. При этом зону концентрации напряжений выполняют на противоположных гранях в плоскости, перпендикулярной продольной оси образца, а перед нагружением зоны образец закрепляют консольно (см. авт. св. СССР №1257448, G01N 3/00).

Недостатком известного способа является низкая точность и достоверность определения критического коэффициента интенсивности напряжений в исследуемом изделии в результате того, что при извлечении образца из изделия, особенно в промышленных условиях, по всему объему образца образуются микротрещины, которые снижают силы сцепления межатомных связей, что приводит к преждевременному разрушению образца, а следовательно, к искажению получаемых данных.

Наиболее близким аналогом к заявленному объекту является способ определения критического коэффициента интенсивности напряжений, заключающийся в том, что в изделии прямоугольного сечения выполняют зону концентрации напряжений, которую нагружают до разрушения и по полученным данным определяют критический коэффициент интенсивности напряжений, отличающийся тем, что зону концентрации напряжения в изделии выполняют в виде углового сегмента в месте пересечения его перпендикулярных граней, образованную зону нагружают по поверхности углового сегмента до его отлома, после чего замеряют разрушающую нагрузку и параметры отломленного углового сегмента, а критический коэффициент интенсивности напряжения в изделии определяют по формуле.

Недостатком известного способа является низкая точность и достоверность определения параметров трещиностойкости бетона вследствие определения характеристики бетона только по одному параметру и узкая область применения способа так как зону концентрации напряжений выполняют только на пересечении перпендикулярных граней.

Целью изобретения является повышение точности и достоверности определения критического коэффициента интенсивности напряжения в изделии и расширение области использования способа.

Поставленная цель решается тем, что в известном способе определения характеристик трещиностойкости бетона в изделии, зону концентрации напряжения в изделии выполняют на поверхности бетона в виде прямоугольного трапецеидального призматического элемента длиной 5 диаметров наибольшей крупности заполнителя и высотой в одни диаметра наибольшей крупности заполнителя, но не менее 20 мм, с углом наклона стороны трапеции в 45 градусов, меньшая сторона которого монолитно связана с бетоном, а верхнюю большую сторону нагружают по поверхности до отлома призматического элемента по меньшей стороне от тела бетона, причем во время нагружения одновременно измеряют деформацию верхней стороны и соответствующее ей усилие, а параметры трещиностойкости бетона определяют по полученному графику «деформация-усилие».

На фиг. 1 показаны:

1 - Прорези на поверхности бетонного элемента.

2 - Прямоугольный трапециедальный призматический элемент, полученный в теле бетона после выполнения пропилов.

3 - Прямоугольный призматический блок, приклеенный к призматическому бетонному элементу 2.

4 - Силовой рычаг, жестко соединенный с прямоугольным блоком 3.

5 - Измерительные рычаги жестко соединенный со стальным блоком 3

6 - Винтовые домкраты или домкраты другого типа, оказывающие давление на силовой рычаг 4, упираясь в тело бетона. Усилие в силовом рычаге измеряют любым известным способом - установкой датчиков на рычаг, измерением даваления в силовом элементе, измерением усилия на бетон.

7 - Индикаторы, закрепленные на измерительных рычагах 5 для измерения перпмещений L.

L1, L2, L3, L4 - величины смещения измерительных рычагов 5 по отношению к поверхности бетона. Измерение смещений в нескольких точках позволяет определить положение линии трещины, неравномерность смещения устья трещины, дает дополнительную (избыточную информацию для повышения точности измерения. Схема измерений с помощью полученной устройством информации показана на фиг. 2.

Отличительный признак, характеризующий действие выполнения зоны концентрации напряжений на поверхности бетона в виде прямоугольного трапецеидального призматического элемента в известных технических решениях не обнаружен. При этом выполнение вышеуказанной зоны в исследуемом изделии позволяет осуществлять последующее нагружение этой зоны до ее отлома непосредственно на поверхности изделия, а не в месте пересечения его перпендикулярных граней. Это позволяет выбрать наиболее рациональную зону работы элемента (угловые зоны наиболее подвержены разрушению), сохранить целостность структуры материала изделия, а следовательно, повысить точность и достоверность полученных результатов.

Для определения призменной прочности, модуля упругости и коэффициента Пуассона известен прием нагружения торцевой поверхности прямоугольного изделия путем создания на его поверхности однозначных сжимающих или растягивающих напряжений (см. ГОСТ 24452-80 "Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона" / Введен: 01.01.1982, с. 7).

В заявляемом способе нагружают не изделие, а прямоугольную трапецеидальную призму, образованную на поверхности изделия. Указанный отличительный признак в заявляемом способе проявляет новое техническое свойство, заключающееся в создании зоны разнозначных нормальных напряжений в исследуемой зоне изделия, а именно сжатых и растягивающих напряжений в разрушающемся сечении материала изделия при отсутствии касательных напряжений, что обеспечивает рост трещины отрыва без сдвига ее берегов от начала растянутой зоны. Это позволяет повысить точность и достоверность определения критического коэффициента интенсивности напряжения в изделии за счет создания в последнем чистого напряженного состояния, характеризующегося растяжением при отсутствии сдвига.

На основании вышеизложенного можно сделать вывод, что для специалиста заявляемый способ определения критического коэффициента интенсивности напряжения в изделии при нормальном отрыве не следует явным образом из известного уровня техники, а, следовательно, соответствует условию патентоспособности «изобретательский уровень».

Для осуществления заявляемого способа определения критического коэффициента интенсивности напряжений в изделии предлагается использовать специальное устройство.

Сущность: в изделии прямоугольного сечения выполняют зону концентрации напряжений, которую нагружают до разрушения и по полученным данным определяют критический коэффициент интенсивности напряжений. Зону концентрации напряжения в изделии выполняют в виде углового сегмента в месте пересечения его перпендикулярных граней. Образованную зону нагружают по поверхности углового сегмента до его отлома, после чего замеряют разрушающую нагрузку и параметры отломленного углового сегмента, а критический коэффициент интенсивности напряжения в изделии определяют по формуле. Технический результат: повышение точности и достоверности.

Сущность изобретения поясняется чертежами, где:

- на фиг. 1 Приведена аксонометрия схемы устройства определения характеристик трещиностойкости бетона изделия;

- на фиг 2. - Прямоугольный трапецеидальный призматический элемент;

- на фиг. 3 - Схема измерений развития трещины.

Обработку полученных графиков можно проводить известными методами. Например в соответствии с ГОСТ 29167-91.

Во время отлома сегментов измеряется усилие отлома F и смещение трещины V. По результатам измерений строится диаграмма F- V. Вид диаграммы показан на фиг. 3. На фиг. 4 показана трансформированная диаграмма, полученная при местном сбросе нагрузки. Диаграммы используют в общем методе диагностики конструкции.

Для фиг. 4 и 5:

D - точка начала прямого участка

СА - параллельна ОТ, СН - перпендикулярна OV.

OTCDK - расчетная диаграмма

X' и X '' - получают параллельным переносом из X по линии разгрузки.

где ϕ=b/L0 - относительная высота образца;

- относительная длина начального надреза.

Используя полученные диаграммы, приведенные на рис. 3 и 4, рассчитывают энергозатраты на развитие и рост трещины.

Энергозатраты на процессы развития и слияния микротрещин до формирования магистральной трещины статического разрушения Wm (МДж) определяют по площади ОТСА.

Энергозатраты на упругое деформирование до начала движения магистральной трещины статического разрушения We (МДж) определяют по АСН.

Энергозатраты на локальное статическое деформирование в зоне магистральной трещины Wt(МДж) определяют по HCDK.

Расчетные энергозатраты на упругое деформирование сплошного образца (, (МДж) определяют по

Полные упругие энергозатраты на статическое деформирование до деления на части Wce (МДж) определяют по ONC'X'O.

По полученным энергозатратам определяются:

1. Статический джей-интеграл, МДж/м2.

2. Статический критический коэффициент интенсивности напряжений, МПа⋅м 0,5.

3. Критический коэффициент интенсивности напряжений при максимальной нагрузке, МПа⋅м0,5

4. Критерий хрупкости, м

Получение вышеприведенных характеристик позволяет оценивать состояние конструкций на соответствие их теоретическим моделям.

Похожие патенты RU2725162C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ КРИТИЧЕСКОГО КОЭФФИЦИЕНТА ИНТЕНСИВНОСТИ НАПРЯЖЕНИЯ В ИЗДЕЛИИ 2006
  • Варламов Андрей Аркадьевич
  • Круциляк Юрий Михайлович
  • Круциляк Михаил Михайлович
RU2324916C1
Способ определения критического коэффициента интенсивности напряжения бетона 2016
  • Леонович Сергей Николаевич
  • Литвиновский Дмитрий Андреевич
  • Ким Лев Владимирович
RU2621618C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМОСТОЙКОСТИ КОНСТРУКЦИОННЫХ КЕРАМИЧЕСКИХ МАТЕРИАЛОВ 1997
  • Иванов Д.А.
  • Фомина Г.А.
RU2131403C1
СПОСОБ ПРИГОТОВЛЕНИЯ БЕТОННОЙ СМЕСИ 2009
  • Коровяков Василий Федорович
  • Алимов Лев Алексеевич
  • Баженова Софья Ильдаровна
  • Воронин Виктор Валерианович
RU2416582C1
Способ определения критического коэффициента интенсивности напряжения бетона после воздействия на него высоких температур 2016
  • Леонович Сергей Николаевич
  • Литвиновский Дмитрий Андреевич
  • Ким Лев Владимирович
RU2621623C1
Способ определения критических параметров трещиностойкости конструкционных материалов 1990
  • Курилкин Борис Викторович
  • Гадалин Николай Иванович
  • Смеляков Евгений Петрович
  • Тарасов Юрий Леонидович
  • Мягких Валерий Иванович
SU1753336A1
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТКИ ТРЕЩИНОСТОЙКОСТИ МАТЕРИАЛОВ 2004
  • Перфилов Владимир Александрович
RU2267767C2
Способ испытания материала на трещиностойкость 1988
  • Трощенко Валерий Трофимович
  • Ясний Петр Владимирович
  • Покровский Владимир Викторович
  • Токарев Павел Васильевич
SU1562749A1
СПОСОБ ОПРЕДЕЛЕНИЯ КРИТИЧЕСКОЙ ДЛИНЫ ТРЕЩИНЫ ДЛЯ НАХОЖДЕНИЯ ВЯЗКОСТИ РАЗРУШЕНИЯ 2015
  • Каблов Евгений Николаевич
  • Луценко Алексей Николаевич
  • Гриневич Анатолий Владимирович
  • Ерасов Владимир Сергеевич
  • Автаев Виталий Васильевич
RU2589523C1
Образец для определения трещиностойкости материала 1991
  • Важенцев Юрий Георгиевич
  • Чекмарев Василий Петрович
SU1809361A1

Иллюстрации к изобретению RU 2 725 162 C1

Реферат патента 2020 года СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ТРЕЩИНОСТОЙКОСТИ БЕТОНА В ИЗДЕЛИИ

Изобретение относится к области строительства. Сущность: в изделии выполняют зону концентрации напряжений, которую нагружают до разрушения и по полученным данным определяют параметры трещиностойкости бетона. Зону концентрации напряжения в изделии выполняют на поверхности бетона в виде прямоугольного трапецеидального призматического элемента длиной 5 диаметров наибольшей крупности заполнителя и высотой в один диаметр наибольшей крупности заполнителя, но не менее 20 мм, с углом наклона стороны трапеции в 45 градусов, меньшая сторона которого монолитно связана с бетоном. Верхнюю большую сторону нагружают по поверхности до отлома призматического элемента по меньшей стороне от тела бетона. Во время нагружения одновременно измеряют деформацию верхней стороны и соответствующее ей усилие, а параметры трещиностойкости бетона определяют по полученному графику «деформация-усилие». Технический результат: повышение точности и достоверности определения критического коэффициента интенсивности напряжения в изделии и расширение области использования способа. 5 ил.

Формула изобретения RU 2 725 162 C1

Способ определения параметров трещиностойкости бетона в изделии, заключающийся в том, что в изделии выполняют зону концентрации напряжений, которую нагружают до разрушения и по полученным данным определяют параметры трещиностойкости бетона, отличающийся тем, что с целью повышения точности и достоверности определения критического коэффициента интенсивности напряжения в изделии и расширения области использования способа зону концентрации напряжения в изделии выполняют на поверхности бетона в виде прямоугольного трапецеидального призматического элемента длиной 5 диаметров наибольшей крупности заполнителя и высотой в один диаметр наибольшей крупности заполнителя, но не менее 20 мм, с углом наклона стороны трапеции в 45 градусов, меньшая сторона которого монолитно связана с бетоном, а верхнюю большую сторону нагружают по поверхности до отлома призматического элемента по меньшей стороне от тела бетона, причем во время нагружения одновременно измеряют деформацию верхней стороны и соответствующее ей усилие, а параметры трещиностойкости бетона определяют по полученному графику «деформация-усилие».

Документы, цитированные в отчете о поиске Патент 2020 года RU2725162C1

СПОСОБ ОПРЕДЕЛЕНИЯ КРИТИЧЕСКОГО КОЭФФИЦИЕНТА ИНТЕНСИВНОСТИ НАПРЯЖЕНИЯ В ИЗДЕЛИИ 2006
  • Варламов Андрей Аркадьевич
  • Круциляк Юрий Михайлович
  • Круциляк Михаил Михайлович
RU2324916C1
Способ определения критического коэффициента интенсивности напряжения бетона 2016
  • Леонович Сергей Николаевич
  • Литвиновский Дмитрий Андреевич
  • Ким Лев Владимирович
RU2621618C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ БЕТОНА МЕТОДОМ СКАЛЫВАНИЯ РЕБРА 2009
  • Губайдуллин Герман Асфович
  • Леонидов Сергей Михайлович
  • Новиков Евгений Иванович
  • Илькаев Евгений Викторович
RU2470284C2
CN 202471499 U, 03.10.2012.

RU 2 725 162 C1

Авторы

Шубин Игорь Любимович

Римшин Владимир Иванович

Варламов Андрей Аркадьевич

Давыдова Анастасия Михайловна

Даты

2020-06-30Публикация

2019-10-21Подача