УЧЕБНАЯ МОДЕЛЬ "КВАНТОВЫЙ КОНТУР" Российский патент 2017 года по МПК G09B23/00 

Описание патента на изобретение RU2624588C2

Изобретение относится к учебным моделям на основе системы оптических и механических элементов для моделирования бинарных и других пространственных и энергетических взаимоотношений элементов различной природы: макро- и микросистем или систем различных информационных уровней. Модель дает возможность реализовать динамическое изменение формы системы. Изобретение может быть использовано в исследованиях геофизических сред, в учебных и других целях в таких областях как геология, кристаллография, астрофизика и астробиология, а также в качестве составной части различных технических устройств.

Известно изобретение [1], в основе которого лежит создание модели искусственного кристалла, предусматривающего кристаллическую решетку, состоящую из шести тетраэдров, и подразумевающего наличие в структуре кристалла «всех химических элементов таблицы Менделеева». Размером и соотношением сторон элементарных ячеек-пирамидок, симметричностью их расположения в кристаллической решетке моделируются различные взаимоотношения между химическими элементами и распределение энергий [1].

Известно изобретение «ДЕМОНСТРАЦИОННАЯ МОДЕЛЬ КРИСТАЛЛА» [2]. Изобретение предназначено для моделирования блочного строения и процессов пластической и упругой деформации квазисимметричных кристаллов различной формы. Получение различных фигур обеспечивается деформацией исходной модели куба. «При построении моделей, из эстетических соображений, а также для того, чтобы ввести число (меру), длину ребер (линий связи) субграней фигур принимают равной одному из чисел Фибоначчи, представленных рядом: 0, 1, 1, 2, 3, 5, 8, 13, 21 и т.д.» [2].

Отличительной особенностью предлагаемой модели от известных изобретений является возможность демонстрации «слабых» энергетических взаимосвязей элементов и пространственное их взаимное распределение, основанное на балансе масс, являющемся следствием закона сохранения информации и энергии.

Техническая реализация заявляемой модели представляет собой систему, состоящую из физически непрерывного контура, объединяющего элементы с массами m1, m2, m3, m4. Контур моделирует относительно гибкую связь между элементами и выполнен в виде спиральных структур.

В основу структуризации взаимного распределения масс положен матричный метод попарных отношений между следующими критериальными факторами: возможные бинарные взаимоотношения энергетических компонентов излучений видимого диапазона (представлены в таблице 1), возможных взаимоотношений (весовых коэффициентов) основных нуклеотидов, как элементов системы, несущих информационную составляющую биополимеров ДНК (представлены в таблице 2), а также весовые коэффициенты бинарных отношений химических элементов периодической системы Д.И. Менделеева.

Где А - аденин (135,13) - C5N5H5

Т - тимин (126,11) - C5N2O2H6

С - цитозин (111,1) - C4N3OH5

Г - гуанин (151,15) - C5N5OH5

Сопоставлением данных возможных бинарных пространственных и энергетических взаимоотношений элементов таких систем, как химические элементы, молекулярно-биологические и квантовые, выявлен простейший «контур», объединяющий элементы системы в закономерном распределении информационно-энергетического баланса таким образом: отношения масс элементов m1/m2~m3/m4, при этом комплементарными элементами будут: m1 и m4; m2 и m3.

Контур, выполненный в виде спиралей с помощью светопроводящих, электропроводящих или комбинированных материалов, моделирует относительно гибкую связь между элементами. Элементы системы могут иметь для лучшей наглядности разный объем, различный цвет, различную прозрачность или сами являться источниками излучений (например, выполненные из светодиодов), иметь в своем составе энергоносители или другие маркеры и потоки.

Распределение элементов и объединяющих спиралей показано на Фиг. 1.

Модель «Квантовый контур» определяется следующими характеристиками системы: элементы модели взаимосвязаны между собой четырьмя гибкими связями в виде спиралей таким образом, что комплементарные элементы попарно связаны скрещивающимися спиралями, витки которых не входят в зацепление друг с другом и размещены друг относительно друга на величину близкую к 90°. Две другие связи между элементами соединяют между собой элементы из разных взаимодополняющих бинарных систем.

Динамические изменения формы модели происходят при следующем взаимном расположении элементов без разрыва связей (без нарушения информационно-энергетического баланса).

Форма 1. «Волна». Моделируется вращательным и поступательным движением системы относительно оси, определяемой как центр масс в средах, обладающих малым сопротивлением. Форма системы ограничивается упругим растяжением спиралей благодаря центробежной силе и силе упругости спиральных связей. Показана на Фиг. 2.

Форма 2. «Частица». Моделируется сжатием всех четырех пружин, что приводит к сближению всех элементов, т.е. сосредоточению масс в небольшом объеме, тем самым увеличивается проходимость в среде, обладающей определенной вязкостью или наличием пор. Такая форма моделирует упругое столкновение системы с элементами среды. Показана на Фиг. 3.

Форма 3. «Винт». Моделирует и демонстрирует повышенную проникающую способность системы, благодаря перегибу и сложению спиралей одна в другую и сжатию двух других спиралей. Образуя своеобразный цуг элементов. Гибкость винта обеспечивает прохождение через среды, имеющие узкие извилистые поры или повышенную вязкость. Показана на Фиг. 4.

Форма 4. Разрыв одной из связей возможен для моделирования и демонстрации различных трип летных взаимоотношений элементов. На рисунке не показана.

Литература

1. Курбанов М.А. Универсальная модель искусственного кристалла. Патент на Изобретение RU 2182729, 13.11.2000.

2. Чепижный К.И. Демонстрационная модель кристалла. Патент на Изобретение RU 2004935, 06.04.1989.

Похожие патенты RU2624588C2

название год авторы номер документа
СПОСОБ НАБЛЮДЕНИЯ ЗА ИЗМЕНЕНИЕМ МАССЫ ВНУТРИ ИЗМЕЛЬЧАЮЩЕГО БЛОКА 2012
  • Галлестей Альварес Эдуардо
  • Штадлер Конрад
RU2558226C2
Способ моделирования явлений в пространственно-временной структуре и устройство для его осуществления 1988
  • Чередников Павел Ильич
SU1554002A1
Пазонный способ моделирования физических полей 1989
  • Чередников Павел Ильич
SU1804649A3
СИСТЕМА ПОДАЧИ КРИОГЕННОГО ШУГООБРАЗНОГО ТОПЛИВА 2002
  • Пинке И.М.
RU2237187C1
СИСТЕМА ДЛЯ МОДЕЛИРОВАНИЯ ГЕНЕТИЧЕСКОЙ И ЛИНГВИСТИЧЕСКОЙ ИНФОРМАЦИИ 2008
  • Горбунова Елена Анатольевна
RU2472221C2
КОНСТРУКТОР МОДЕЛЕЙ ЭЛЕКТРОННЫХ ОБОЛОЧЕК И ЯДЕР АТОМОВ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ 2013
  • Никитин Андрей Николаевич
RU2558477C2
СТИРАЛЬНАЯ МАШИНА 2008
  • Потанцев Олег
  • Аргудяев Сергей
RU2466224C2
Способ моделирования эволюции материи 1989
  • Чередников Павел Ильич
SU1681322A1
Способ определения масс флотского мазута, воды и остатка, выделяемых при отстаивании некондиционного мазута с деэмульгатором 2022
  • Нелюбов Дмитрий Владимирович
  • Фахрутдинов Марат Иматдинович
RU2792540C1
ПОЛУПРОВОДНИКОВАЯ ИНТЕГРАЛЬНАЯ СХЕМА 1991
  • Кеннет Остин[Gb]
RU2104601C1

Иллюстрации к изобретению RU 2 624 588 C2

Реферат патента 2017 года УЧЕБНАЯ МОДЕЛЬ "КВАНТОВЫЙ КОНТУР"

Изобретение относится к учебным моделям, в частности, к учебным моделям для демонстрации пространственных и энергетических связей элементов макро- и микросистем, систем различных информационных уровней. Учебная модель представляет собой физически непрерывный контур, образованный спиральными структурами с четырьмя прикрепленными к ним массами. При этом спиральные структуры выполнены с возможностью упругой деформации, сгиба в центре масс модели и совмещения витков без взаимного зацепления. Техническим результатом изобретения является возможность демонстрации слабых энергетических связей элементов и пространственного распределение указанных связей. 4 ил.

Формула изобретения RU 2 624 588 C2

Учебная модель «Квантовый контур», отображающая пространственные и энергетические отношения, взаимосвязи элементов макро- и микросистем на основе информационно-энергетического баланса, отличающаяся тем, что связи между элементами представляют собой физически непрерывный контур, образованный спиралевидными структурами, выполненными с возможностью: упругой деформации, сгиба в зоне центра масс элементов и совмещения витков спиралевидной структуры без взаимного зацепления витков.

Документы, цитированные в отчете о поиске Патент 2017 года RU2624588C2

RU 2003183 C1, 15.11.1993
Полуавтомат для набивки шариков в сепараторы подшипников качения 1949
  • Воронцов А.В.
SU85728A1
КОНСТРУКТОР МОДЕЛЕЙ ЭЛЕКТРОННЫХ ОБОЛОЧЕК И ЯДЕР АТОМОВ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ 2013
  • Никитин Андрей Николаевич
RU2558477C2
Электрическая печь сопротивления 1934
  • Адамович Д.Ф.
SU43096A1
US 20060099877 A1, 11.05.2006.

RU 2 624 588 C2

Авторы

Горбунова Елена Анатольевна

Даты

2017-07-04Публикация

2015-12-15Подача