Способ переработки жидких радиоактивных отходов Российский патент 2017 года по МПК G21F9/16 

Описание патента на изобретение RU2624825C2

Изобретение относится к технологии обращения с жидкими радиоактивными отходами ядерного топливно-энергетического цикла и может быть использовано в процессе переработки жидких радиоактивных отходов (ЖРО) для максимального сокращения их объемов и удаления радионуклидов с концентрированием их в твердой фазе, при обработке которой существующими методами обеспечивается надежная локализация радиоактивных веществ от окружающей среды.

В процессе эксплуатации АЭС образуется относительно большое количество жидких и твердых радиоактивных отходов. Имеющиеся на действующих АЭС системы спецводоочистки непрерывно перерабатывают низкосолевые ЖРО путем упаривания с кристаллизацией ограниченно растворимых солей. В результате упаривания ЖРО получается конденсат и кубовые остатки ЖРО, которые накапливаются в специальных хранилищах ЖРО. На поддержание технического состояния действующих хранилищ в соответствии с требованиями нормативных документов, а также на их охрану расходуются значительные материальные и финансовые ресурсы.

ЖРО представляют собой водные растворы неорганических и органических солей (ацетат, сульфат, хлорид, фосфат, оксалат, бикарбонат натрия, кальция, железа, аммония) общей минерализацией до 300-500 г/дм3. Среди радионуклидов в ЖРО наибольшую опасность представляют долгоживущие изотопы 99Tc, 235,238U, 239Pu, 241Am.

Известен способ обработки жидких радиоактивных отходов АЭС, включающий сбор жидких радиоактивных отходов, концентрирование и остекловывание их с последующим захоронением продукта остекловывания жидких радиоактивных отходов АЭС [1].

Недостатком данного способа является исключение возможности использования продукта остекловывания жидких радиоактивных отходов в народном хозяйстве.

Известен способ очистки водных радиоактивных отходов, заключающийся в упаривании ЖРО, получении конденсата и кубового остатка. Для очистки конденсата и локализации радионуклидов в кубовом остатке в процессе выпаривания в парогазовую фазу вводят озоносодержащий газ. Образующиеся в результате взаимодействия озона с органическими примесями органические кислоты различной основности вместе с радионуклидами попадают в кубовый остаток и связываются в соли. Далее кубовые остатки отверждают различными методами и хранят [2]. В этом случае происходит дополнительная очистка конденсата и одновременное увеличение содержания радионуклидов в кубовом остатке.

Наиболее близким к предлагаемому способу является способ переработки органических радиоактивных отходов [3]. Способ включает распыление жидких радиоактивных отходов форсункой и сжигание в псевдосжиженном слое гранулированного катализатора при температуре 600-700°С, очистку и охлаждение горячих отходящих газов, содержащих твердые частицы, оксиды серы и фосфорный ангидрид последовательно в циклоне, струйном скруббере, абсорбере-конденсаторе и аэрозольном фильтре.

Недостатками способа-прототипа являются сложное аппаратурное оформление, необходимость очистки газов от частиц, образующихся при истирании катализатора, отравление катализатора оксидами серы и фосфорным ангидридом, сложность извлечения и возврата в производство радионуклидов, в частности урана.

Задача изобретения - сокращение объема жидких радиоактивных отходов и уменьшение уровня их радиоактивности.

Поставленная задача достигается тем, что в способе очистки жидких радиоактивных отходов (ЖРО), включающем операции их термической обработки, согласно изобретению очистку ЖРО проводят в два этапа, на первом этапе в рабочий резервуар с помощью насоса помещают ЖРО из первой емкости и штамм грибов из второй емкости, причем соотношение ЖРО и штаммов микроорганизмов выбирают в пропорции 1 к 15, с помощью мотора-редуктора в рабочем резервуаре производят смешивание ЖРО и штаммов грибов со скоростью 5 об/мин, далее с помощью газовой горелки, находящейся под днищем рабочего резервуара, производят его постепенный разогрев сначала до 30°С, выдерживая температуру в течение 12 часов, на втором этапе производят выпаривание получившейся смеси с помощью дальнейшего разогревания рабочего резервуара до температуры 538°С, при этом выпаривание проводят до момента, когда в рабочем резервуаре с помощью датчика уровня фиксируют 2/3 от начального уровня раствора, при этом газ, образовавшийся в процессе выпаривания, выводят с верхней части рабочего резервуара и используют в прикладных целях. В качестве штамма грибов выбраны грибы вида Rhizopus arrhizus.

Достигаемым техническим результатом является повышение сохранности окружающей среды, достигаемое путем выпаривания отработанной радиоактивной биомассы микроорганизмов для ее дальнейшего надежного захоронения.

На фиг.1 представлена установка для осуществления предлагаемого способа, содержащая рабочий резервуар 1, мотор-редуктор со шнеком 2, газовую горелку 3, станцию подготовки природного газа 4, датчик расхода 5, предохранительный клапан 6, емкость с ЖРО 7, насос дозатора ЖРО 8, емкость со штаммом 9, насос-дозатор штамма 10, трубы для выделяемого газа 11, датчик уровня 12.

Предлагаемый способ работает следующим образом. В рабочий резервуар 1, установленный на основание, подают с помощью насоса-дозатора 8 ЖРО из емкости с ЖРО 7. Затем в рабочий резервуар 1 из емкости со штаммом 9 с помощью насоса-дозатора 10 подают микроорганизмы штамма. В качестве штамма могут использоваться, к примеру, грибы вида Rhizopus arrhizus. Все содержимое, находящееся в рабочем резервуаре 1 в пропорции 1 к 15, смешивается с помощью шнека мотора-редуктора 2. Далее начинается процесс нагревания с помощью включенной газовой горелки 3. Процесс протекает в два этапа: сначала рабочий резервуар 1 нагревается до температуры 30°С и выдерживается при этой температуре 12 часов, далее рабочий резервуар 1 продолжают нагревать до температуры 538°С. Выпаривание проводят до момента, когда в рабочем резервуаре 1 с помощью датчика уровня 12 фиксируют 2/3 от начального уровня раствора, при этом газ, образовавшийся в процессе выпаривания, выводят с верхней части рабочего резервуара и используют в прикладных целях.

При аварийной ситуации в резервуаре 1 с растворами срабатывает предохранительный клапан 6, который сбрасывает газ в атмосферу. После выпаривания раствора на 1/3 насосами-дозаторами 8 и 10 подаются ЖРО и микроорганизмы штамма. Для предохранения от передозировки растворов в резервуаре 1 установлен датчик уровня 12, который срабатывает в случае переполнения.

Источники информации

1. Коростылев Д.П. Водный режим и обработка радиоактивных вод АЭС, М.: Энергоатомиздат, 1983, с. 222-225

2. Авторское свидетельство СССР N 1730684, кл. G21F 9/08, 1992.

3. Патент РФ №2130209, МПК6 G21F 9/32, 9/14, F23G 7/00, 5/30, 1999.

Похожие патенты RU2624825C2

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ КУБОВОГО ОСТАТКА ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2006
  • Авраменко Валентин Александрович
  • Добржанский Виталий Георгиевич
  • Сергиенко Валентин Иванович
  • Шматко Сергей Иванович
RU2297055C1
СПОСОБ ОТВЕРЖДЕНИЯ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Шестоперов И.Н.
  • Смелова Т.В.
  • Мусатов Н.Д.
  • Агеенков А.Т.
  • Комаров Э.В.
  • Демин А.В.
  • Кривяков О.А.
RU2164716C1
СПОСОБ ОЧИСТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2013
  • Аржаткин Владимир Геннадьевич
  • Архипов Владимир Павлович
  • Басиев Александр Гаврилович
  • Ершов Борис Григорьевич
  • Новиков Дмитрий Олегович
  • Калашников Валерий Георгиевич
  • Камруков Александр Семенович
  • Константинов Виталий Евгеньевич
  • Козлов Николай Павлович
  • Лагунова Юлия Олеговна
  • Матвеенко Александр Валентинович
  • Малков Кирилл Ильич
  • Селиверстов Александр Федорович
  • Трофимова Мария Олеговна
  • Чечельницкий Геннадий Моисеевич
  • Шашковский Сергей Геннадьевич
  • Яловик Михаил Степанович
RU2560837C2
СПОСОБ ПЕРЕРАБОТКИ РАДИОАКТИВНЫХ ОТХОДОВ ТЕПЛОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ 2013
  • Гелбутовский Александр Брониславович
  • Кишкин Станислав Александрович
  • Гаврилов Александр Федорович
  • Левашов Павел Владимирович
  • Черемисин Петр Иванович
  • Степанов Игорь Константинович
RU2548007C2
Способ очистки жидких радиоактивных отходов и устройство для его осуществления 2018
  • Пензин Роман Андреевич
  • Милютин Виталий Витальевич
  • Демин Анатолий Викторович
RU2697824C1
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ (ВАРИАНТЫ) 2006
  • Авраменко Валентин Александрович
  • Добржанский Виталий Георгиевич
  • Сергиенко Валентин Иванович
  • Шматко Сергей Иванович
RU2321909C1
СПОСОБ КОНСЕРВАЦИИ ПРИПОВЕРХНОСТНОГО ХРАНИЛИЩА, СОДЕРЖАЩЕГО РАДИОАКТИВНЫЕ ОТХОДЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2012
  • Сергеев Валерий Иванович
  • Степанова Нонна Юрьевна
  • Шимко Татьяна Георгиевна
  • Кулешова Маргарита Львовна
RU2504850C1
СПОСОБ УДАЛЕНИЯ РАДИОАКТИВНОГО ИЗОТОПА CO ИЗ КУБОВЫХ ОСТАТКОВ АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Канцеров Александр Иванович
  • Новолодский Виктор Алексеевич
  • Чалиян Александр Григорьевич
  • Румянцев Андрей Алексеевич
RU2558899C1
Способ отверждения жидких радиоактивных отходов 2018
  • Епимахов Виталий Николаевич
  • Олейник Михаил Сергеевич
  • Прохоркин Сергей Владимирович
  • Ткаченко Виктор Сергеевич
  • Смирнов Виталий Дмитриевич
  • Кондратьев Валерий Аркадьевич
RU2669202C1
СПОСОБ ИЗМЕРЕНИЯ АКТИВНОСТИ ПРОБЫ ВОДНОГО РАСТВОРА ПО Со И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Канцеров Александр Иванович
  • Новолодский Виктор Алексеевич
  • Чалиян Александр Григорьевич
  • Румянцев Андрей Алексеевич
RU2561707C1

Иллюстрации к изобретению RU 2 624 825 C2

Реферат патента 2017 года Способ переработки жидких радиоактивных отходов

Изобретение относится к технологии обращения с жидкими радиоактивными отходами ядерного топливно-энергетического цикла. Способ очистки жидких радиоактивных отходов (ЖРО) включает операции их термической обработки, очистку ЖРО проводят в два этапа. В рабочий резервуар с помощью насоса помещают ЖРО из первой емкости и штамм грибов из второй емкости. Соотношение ЖРО и штаммов грибов выбирают в пропорции 1 к 15, с помощью мотора-редуктора в рабочем резервуаре производят смешивание ЖРО и штаммов грибов со скоростью 5 об/мин, далее с помощью газовой горелки, находящейся под днищем рабочего резервуара, производят его постепенный разогрев сначала до 30°С, выдерживая температуру в течение 12 часов. Производят выпаривание получившейся смеси с помощью дальнейшего разогревания рабочего резервуара до температуры 538°С. Выпаривание проводят до момента, когда в рабочем резервуаре с помощью датчика уровня фиксируют 2/3 от начального уровня раствора. Изобретение позволяет сократить объем жидких радиоактивных отходов и уменьшить уровень их радиоактивности. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 624 825 C2

1. Способ очистки жидких радиоактивных отходов (ЖРО), включающий операции их термической обработки, отличающийся тем, что очистку ЖРО проводят в два этапа, на первом этапе в рабочий резервуар с помощью насоса помещают ЖРО из первой емкости и штамм грибов из второй емкости, причем соотношение ЖРО и штаммов грибов выбирают в пропорции 1 к 15, с помощью мотора-редуктора в рабочем резервуаре производят смешивание ЖРО и штаммов грибов со скоростью 5 об/мин, далее с помощью газовой горелки, находящейся под днищем рабочего резервуара, производят его постепенный разогрев сначала до 30°С, выдерживая температуру в течение 12 часов, на втором этапе производят выпаривание получившейся смеси с помощью дальнейшего разогревания рабочего резервуара до температуры 538°С, при этом выпаривание проводят до момента, когда в рабочем резервуаре с помощью датчика уровня фиксируют 2/3 от начального уровня раствора, при этом газ, образовавшийся в процессе выпаривания, выводят с верхней части рабочего резервуара и используют в прикладных целях.

2. Способ очистки жидких радиоактивных отходов (ЖРО) по п.1, отличающийся тем, что в качестве штамма грибов выбраны грибы вида Rhizopus arrhizus.

Документы, цитированные в отчете о поиске Патент 2017 года RU2624825C2

СПОСОБ ПЕРЕРАБОТКИ ОРГАНИЧЕСКИХ РАДИОАКТИВНЫХ ОТХОДОВ 1997
  • Исмагилов З.Р.
  • Керженцев М.А.
  • Коротких В.Н.
  • Лунюшкин Б.И.
  • Островский Ю.В.
  • Афанасьев В.Л.
  • Костин А.Л.
RU2130209C1
RU 2010130270 A, 27.01.2012
СПОСОБ БИОЛОГИЧЕСКОЙ ОЧИСТКИ ЖИДКОСТЕЙ ОТ РАДИОНУКЛИДОВ И ТЯЖЕЛЫХ МЕТАЛЛОВ И ШТАММ ГРИБА RHIZOPUS ARRHIRUS BKMF - 592, ИСПОЛЬЗУЕМЫЙ ДЛЯ ПОЛУЧЕНИЯ БИОМАССЫ, ИЗВЛЕКАЮЩЕЙ РАДИОНУКЛИДЫ И ТЯЖЕЛЫЕ МЕТАЛЛЫ ИЗ ЖИДКОСТЕЙ 1992
  • Ховрычев М.П.
  • Мареев И.Ю.
  • Помыткин В.Ф.
RU2024080C1
Способ выявления серотонина на гистологическом препарате 1987
  • Пуговкин Андрей Петрович
  • Даринский Юрий Анатольевич
  • Казарин Андрей Борисович
SU1594370A1
US 4352332 A, 05.10.1982.

RU 2 624 825 C2

Авторы

Москальчук Анатолий Алексеевич

Пундуров Юрий Александрович

Синий Георгий Викторович

Давыдова Татьяна Николаевна

Житников Станислав Семенович

Егоров Евгений Иванович

Ганчарук Александр Сергеевич

Горбунов Петр Иванович

Даты

2017-07-07Публикация

2015-08-14Подача