Изобретение относится к технологии обращения с жидкими радиоактивными отходами ядерного топливно-энергетического цикла и может быть использовано в процессе переработки жидких радиоактивных отходов (ЖРО) для максимального сокращения их объемов и удаления радионуклидов с концентрированием их в твердой фазе, при обработке которой существующими методами обеспечивается надежная локализация радиоактивных веществ от окружающей среды.
В процессе эксплуатации АЭС образуется относительно большое количество жидких и твердых радиоактивных отходов. Имеющиеся на действующих АЭС системы спецводоочистки непрерывно перерабатывают низкосолевые ЖРО путем упаривания с кристаллизацией ограниченно растворимых солей. В результате упаривания ЖРО получается конденсат и кубовые остатки ЖРО, которые накапливаются в специальных хранилищах ЖРО. На поддержание технического состояния действующих хранилищ в соответствии с требованиями нормативных документов, а также на их охрану расходуются значительные материальные и финансовые ресурсы.
ЖРО представляют собой водные растворы неорганических и органических солей (ацетат, сульфат, хлорид, фосфат, оксалат, бикарбонат натрия, кальция, железа, аммония) общей минерализацией до 300-500 г/дм3. Среди радионуклидов в ЖРО наибольшую опасность представляют долгоживущие изотопы 99Tc, 235,238U, 239Pu, 241Am.
Известен способ обработки жидких радиоактивных отходов АЭС, включающий сбор жидких радиоактивных отходов, концентрирование и остекловывание их с последующим захоронением продукта остекловывания жидких радиоактивных отходов АЭС [1].
Недостатком данного способа является исключение возможности использования продукта остекловывания жидких радиоактивных отходов в народном хозяйстве.
Известен способ очистки водных радиоактивных отходов, заключающийся в упаривании ЖРО, получении конденсата и кубового остатка. Для очистки конденсата и локализации радионуклидов в кубовом остатке в процессе выпаривания в парогазовую фазу вводят озоносодержащий газ. Образующиеся в результате взаимодействия озона с органическими примесями органические кислоты различной основности вместе с радионуклидами попадают в кубовый остаток и связываются в соли. Далее кубовые остатки отверждают различными методами и хранят [2]. В этом случае происходит дополнительная очистка конденсата и одновременное увеличение содержания радионуклидов в кубовом остатке.
Наиболее близким к предлагаемому способу является способ переработки органических радиоактивных отходов [3]. Способ включает распыление жидких радиоактивных отходов форсункой и сжигание в псевдосжиженном слое гранулированного катализатора при температуре 600-700°С, очистку и охлаждение горячих отходящих газов, содержащих твердые частицы, оксиды серы и фосфорный ангидрид последовательно в циклоне, струйном скруббере, абсорбере-конденсаторе и аэрозольном фильтре.
Недостатками способа-прототипа являются сложное аппаратурное оформление, необходимость очистки газов от частиц, образующихся при истирании катализатора, отравление катализатора оксидами серы и фосфорным ангидридом, сложность извлечения и возврата в производство радионуклидов, в частности урана.
Задача изобретения - сокращение объема жидких радиоактивных отходов и уменьшение уровня их радиоактивности.
Поставленная задача достигается тем, что в способе очистки жидких радиоактивных отходов (ЖРО), включающем операции их термической обработки, согласно изобретению очистку ЖРО проводят в два этапа, на первом этапе в рабочий резервуар с помощью насоса помещают ЖРО из первой емкости и штамм грибов из второй емкости, причем соотношение ЖРО и штаммов микроорганизмов выбирают в пропорции 1 к 15, с помощью мотора-редуктора в рабочем резервуаре производят смешивание ЖРО и штаммов грибов со скоростью 5 об/мин, далее с помощью газовой горелки, находящейся под днищем рабочего резервуара, производят его постепенный разогрев сначала до 30°С, выдерживая температуру в течение 12 часов, на втором этапе производят выпаривание получившейся смеси с помощью дальнейшего разогревания рабочего резервуара до температуры 538°С, при этом выпаривание проводят до момента, когда в рабочем резервуаре с помощью датчика уровня фиксируют 2/3 от начального уровня раствора, при этом газ, образовавшийся в процессе выпаривания, выводят с верхней части рабочего резервуара и используют в прикладных целях. В качестве штамма грибов выбраны грибы вида Rhizopus arrhizus.
Достигаемым техническим результатом является повышение сохранности окружающей среды, достигаемое путем выпаривания отработанной радиоактивной биомассы микроорганизмов для ее дальнейшего надежного захоронения.
На фиг.1 представлена установка для осуществления предлагаемого способа, содержащая рабочий резервуар 1, мотор-редуктор со шнеком 2, газовую горелку 3, станцию подготовки природного газа 4, датчик расхода 5, предохранительный клапан 6, емкость с ЖРО 7, насос дозатора ЖРО 8, емкость со штаммом 9, насос-дозатор штамма 10, трубы для выделяемого газа 11, датчик уровня 12.
Предлагаемый способ работает следующим образом. В рабочий резервуар 1, установленный на основание, подают с помощью насоса-дозатора 8 ЖРО из емкости с ЖРО 7. Затем в рабочий резервуар 1 из емкости со штаммом 9 с помощью насоса-дозатора 10 подают микроорганизмы штамма. В качестве штамма могут использоваться, к примеру, грибы вида Rhizopus arrhizus. Все содержимое, находящееся в рабочем резервуаре 1 в пропорции 1 к 15, смешивается с помощью шнека мотора-редуктора 2. Далее начинается процесс нагревания с помощью включенной газовой горелки 3. Процесс протекает в два этапа: сначала рабочий резервуар 1 нагревается до температуры 30°С и выдерживается при этой температуре 12 часов, далее рабочий резервуар 1 продолжают нагревать до температуры 538°С. Выпаривание проводят до момента, когда в рабочем резервуаре 1 с помощью датчика уровня 12 фиксируют 2/3 от начального уровня раствора, при этом газ, образовавшийся в процессе выпаривания, выводят с верхней части рабочего резервуара и используют в прикладных целях.
При аварийной ситуации в резервуаре 1 с растворами срабатывает предохранительный клапан 6, который сбрасывает газ в атмосферу. После выпаривания раствора на 1/3 насосами-дозаторами 8 и 10 подаются ЖРО и микроорганизмы штамма. Для предохранения от передозировки растворов в резервуаре 1 установлен датчик уровня 12, который срабатывает в случае переполнения.
Источники информации
1. Коростылев Д.П. Водный режим и обработка радиоактивных вод АЭС, М.: Энергоатомиздат, 1983, с. 222-225
2. Авторское свидетельство СССР N 1730684, кл. G21F 9/08, 1992.
3. Патент РФ №2130209, МПК6 G21F 9/32, 9/14, F23G 7/00, 5/30, 1999.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПЕРЕРАБОТКИ КУБОВОГО ОСТАТКА ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ | 2006 |
|
RU2297055C1 |
СПОСОБ ОТВЕРЖДЕНИЯ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2164716C1 |
СПОСОБ ОЧИСТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ | 2013 |
|
RU2560837C2 |
СПОСОБ ПЕРЕРАБОТКИ РАДИОАКТИВНЫХ ОТХОДОВ ТЕПЛОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ | 2013 |
|
RU2548007C2 |
Способ очистки жидких радиоактивных отходов и устройство для его осуществления | 2018 |
|
RU2697824C1 |
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ (ВАРИАНТЫ) | 2006 |
|
RU2321909C1 |
СПОСОБ КОНСЕРВАЦИИ ПРИПОВЕРХНОСТНОГО ХРАНИЛИЩА, СОДЕРЖАЩЕГО РАДИОАКТИВНЫЕ ОТХОДЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2012 |
|
RU2504850C1 |
СПОСОБ УДАЛЕНИЯ РАДИОАКТИВНОГО ИЗОТОПА CO ИЗ КУБОВЫХ ОСТАТКОВ АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2014 |
|
RU2558899C1 |
Способ отверждения жидких радиоактивных отходов | 2018 |
|
RU2669202C1 |
СПОСОБ ИЗМЕРЕНИЯ АКТИВНОСТИ ПРОБЫ ВОДНОГО РАСТВОРА ПО Со И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2014 |
|
RU2561707C1 |
Изобретение относится к технологии обращения с жидкими радиоактивными отходами ядерного топливно-энергетического цикла. Способ очистки жидких радиоактивных отходов (ЖРО) включает операции их термической обработки, очистку ЖРО проводят в два этапа. В рабочий резервуар с помощью насоса помещают ЖРО из первой емкости и штамм грибов из второй емкости. Соотношение ЖРО и штаммов грибов выбирают в пропорции 1 к 15, с помощью мотора-редуктора в рабочем резервуаре производят смешивание ЖРО и штаммов грибов со скоростью 5 об/мин, далее с помощью газовой горелки, находящейся под днищем рабочего резервуара, производят его постепенный разогрев сначала до 30°С, выдерживая температуру в течение 12 часов. Производят выпаривание получившейся смеси с помощью дальнейшего разогревания рабочего резервуара до температуры 538°С. Выпаривание проводят до момента, когда в рабочем резервуаре с помощью датчика уровня фиксируют 2/3 от начального уровня раствора. Изобретение позволяет сократить объем жидких радиоактивных отходов и уменьшить уровень их радиоактивности. 1 з.п. ф-лы, 1 ил.
1. Способ очистки жидких радиоактивных отходов (ЖРО), включающий операции их термической обработки, отличающийся тем, что очистку ЖРО проводят в два этапа, на первом этапе в рабочий резервуар с помощью насоса помещают ЖРО из первой емкости и штамм грибов из второй емкости, причем соотношение ЖРО и штаммов грибов выбирают в пропорции 1 к 15, с помощью мотора-редуктора в рабочем резервуаре производят смешивание ЖРО и штаммов грибов со скоростью 5 об/мин, далее с помощью газовой горелки, находящейся под днищем рабочего резервуара, производят его постепенный разогрев сначала до 30°С, выдерживая температуру в течение 12 часов, на втором этапе производят выпаривание получившейся смеси с помощью дальнейшего разогревания рабочего резервуара до температуры 538°С, при этом выпаривание проводят до момента, когда в рабочем резервуаре с помощью датчика уровня фиксируют 2/3 от начального уровня раствора, при этом газ, образовавшийся в процессе выпаривания, выводят с верхней части рабочего резервуара и используют в прикладных целях.
2. Способ очистки жидких радиоактивных отходов (ЖРО) по п.1, отличающийся тем, что в качестве штамма грибов выбраны грибы вида Rhizopus arrhizus.
СПОСОБ ПЕРЕРАБОТКИ ОРГАНИЧЕСКИХ РАДИОАКТИВНЫХ ОТХОДОВ | 1997 |
|
RU2130209C1 |
RU 2010130270 A, 27.01.2012 | |||
СПОСОБ БИОЛОГИЧЕСКОЙ ОЧИСТКИ ЖИДКОСТЕЙ ОТ РАДИОНУКЛИДОВ И ТЯЖЕЛЫХ МЕТАЛЛОВ И ШТАММ ГРИБА RHIZOPUS ARRHIRUS BKMF - 592, ИСПОЛЬЗУЕМЫЙ ДЛЯ ПОЛУЧЕНИЯ БИОМАССЫ, ИЗВЛЕКАЮЩЕЙ РАДИОНУКЛИДЫ И ТЯЖЕЛЫЕ МЕТАЛЛЫ ИЗ ЖИДКОСТЕЙ | 1992 |
|
RU2024080C1 |
Способ выявления серотонина на гистологическом препарате | 1987 |
|
SU1594370A1 |
US 4352332 A, 05.10.1982. |
Авторы
Даты
2017-07-07—Публикация
2015-08-14—Подача