ВЫСОКОПРОЧНЫЙ МЕЛКОЗЕРНИСТЫЙ БЕТОН НА ОСНОВЕ КОМПОЗИЦИОННОГО ВЯЖУЩЕГО С ИСПОЛЬЗОВАНИЕМ ТЕХНОГЕННОГО СЫРЬЯ Российский патент 2017 года по МПК C04B28/04 C04B14/06 C04B18/12 C04B24/26 C04B103/32 C04B111/27 

Описание патента на изобретение RU2625410C1

Изобретение относится к области строительных материалов, в частности к сырьевой смеси для приготовления высокопрочного мелкозернистого бетона на основе композиционного вяжущего с применением техногенного материала, и может быть использовано для изготовления элементов каркаса зданий и сооружений как в гражданском, так и в промышленном строительстве.

Известна сырьевая смесь для высокопрочного бетона (патент на изобретение RU №2466110, С04В 28/04, В28В 1/00, С04В 111/20), содержащая компоненты, масс. %: портландцемент 25,6-26,0, кварцполевошпатный песок с модулем крупности 2,1 31,9-32,5, гранитные отсевы фр. 2,5-5 мм 31,9-32,5, углеродные наноматериалы 0,01-0,0001 и воду 8,99-10,6.

К основным недостаткам сырьевой смеси для высокопрочного бетона относится высокий расход портландцемента и высокое водопоглощение, так как используемые заполнители имеют более крупную фракцию, из-за этого полученный материал имеет низкую плотность.

Наиболее близким к предлагаемому изобретению техническим решением, принятым за прототип, является сырьевая смесь для высокопрочного бетона с нанодисперсной добавкой (патент на изобретение RU №2471752, С04В 38/00, В82В 1/00) содержащая компонентов, масс. %: портландцемент 25-25,6, кварцполевошпатный песок с модулем крупности 2,1 32,5-33, гранитные отсевы фр. 2,5-5 мм 32,5-33, нанодисперсный порошок диоксида кремния Таркосил-05 0,013-0,052 и воду 8,348-9,987.

К основным недостаткам сырьевой смеси для высокопрочного бетона с нанодисперсной добавкой относится высокий расход портландцемента и высокое водопоглощение, так как используемые заполнители имеют более крупную фракцию, из-за этого полученный материал более пористый и имеет низкую плотность.

Изобретение позволяет получить высокопрочный мелкозернистый бетон с применением техногенного материала шамота в качестве наполнителя, обладающий низким расходом портландцемента в составе сырьевой смеси, низким водопоглощением при сохранении его высокой прочности и плотности.

Это достигается тем, высокопрочный мелкозернистый бетон на основе композиционного вяжущего с применением техногенного материала шамота, содержит портландцемент, активную добавку, наполнитель, заполнитель, пластифицирующую добавку и воду; в качестве активной добавки используется глиноземистый цемент и микрокремнезем; в качестве наполнителя - техногенный материал шамот с удельной поверхностью 450-500 м2/кг; в качестве заполнителя - кварцевый песок фракции 0,63-1,25 мм и отсев дробления кварцитопесчаника фракции 1,25 мм; в качестве пластифицирующей добавки - гиперпластификатор Melflux 2651 F и воду при следующем соотношении компонентов, масс. %:

портландцемент 20,0-21,0 глиноземистый цемент 2,0-2,1 микрокремнезем 2,0 техногенный материал шамот 0,7-1,7 кварцевый песок 20,5-21,5 отсев дробления кварцитопесчаника 46,5-47,5 гиперпластификатор Melflux 2651 F 0,2 вода остальное

Характеристика компонентов высокопрочного мелкозернистого бетона

Композиционное вяжущее:

- портландцемент марки ЦЕМ I 42,5 Н соответствует ГОСТ 10178-85;

- в качестве активной добавки применяется глиноземистый цемент марки ГЦ 40 по ГОСТ 969-91 и микрокремнезем, соответствующий требованиям ТУ 5743-048-02495332-96;

- в качестве наполнителя используется материал техногенного происхождения шамот по ГОСТ 390-69.

В качестве заполнителя - кварцевый песок ГОСТ 2138-91 фракции 0,63-1,25 мм и отсев дробления кварцитопесчаника ГОСТ 8267-93 фракции 1,25 мм.

В качестве пластифицирующей добавки - гиперпластификатор Melflux 2651 F (Производитель: Degussa Constraction Polymers (SKW Trostberg, Германия)) - порошковый продукт, полученный методом распылительной сушки на основе модифицированного полиэфиркарбоксилата, высокоэффективный диспергатор, снижает усадку, эффективен в широком диапазоне температур, обеспечивает высокую раннюю прочность [http://www.slimstone.ru/color.html от 22. 03. 2017 (13:35:18)]

Вода для бетонов и строительных растворов соответствует требованию ГОСТ 23732-79.

Пример исполнения.

Было изготовлено пять составов предлагаемого высокопрочного мелкозернистого бетона, состоящего из композиционного вяжущего, заполнителя и пластифицирующей добавки. Смесь готовили в два этапа. На первом этапе готовили сухую сырьевую смесь. Предварительно шамот измельчали до Sуд=450-500 м2/кг в шаровой (можно в вибрационной мельнице). Все сухие компоненты сырьевой смеси (портландцемент, глиноземистый цемент, микрокремнезем, техногенный материал - шамот) дозировали весовым методом в следующем массовом соотношении: 19 кг (1,2%) наполнителя шамота, 523 кг (21,5%) кварцевого песка фракции 0,63-1,25 мм, 1175 кг (47%) отсева дробления кварцитопесчаника фракции 1,25 мм, 523,8 кг (20%) портландцемента, 52 кг (2,1%) глиноземистого цемента, 52 кг (2%) микрокремнезема и тщательно перемешивали в бетоносмесителе в течение 3 минут.

Параллельно готовили 5 кг (0,2%) раствора гиперпластификатора Melflux 2651 F с 94,8 л (6%) воды. Приготовленный раствор добавляли к сухой сырьевой смеси и тщательно перемешивали в бетоносмесителе в течение 2 минут.

На втором этапе формовали образцы-кубы размером 100×100×100 мм мелкозернистого бетона традиционным способом - путем заполнения стандартных форм 2ФК-100 по ГОСТ 10181-2014. Время выдержки в формах 8 часов. После распалубливания образцы помещали в камеру с нормальными условиями твердения: с температурой (20±2)°С и относительной влажностью воздуха (95±5)% на 28 суток.

Состав образцов из высокопрочного мелкозернистого бетона на основе композиционного вяжущего с применением техногенного материала шамота представлен в табл. 1

Затем образцы мелкозернистого бетона испытывали на прочность по ГОСТ 10180 и определяли водопоглощение по ГОСТ 12730.3-78. Результаты испытаний представлены в табл. 1

Образцы под номером 2, 3 и 4 показали высокие результаты по прочности (класс по прочности В80) с низким водопоглощением (0,8%) и высокой плотностью (2380 кг/м3), таким образом, именно эти составы выбраны оптимальными для производства высокопрочного мелкозернистого бетона на основе композиционного вяжущего с применением техногенного материала шамота.

Процессы структурообразования, протекающие в зоне контакта частиц композиционного вяжущего, полученного путем введения в портландцемент частиц шамота, измельченного до S=450-500 м2/кг, и пластифицирующей добавки, заключаются в избирательном воздействии этих компонентов на процессы синтеза новообразований. Особенности состава и строения вяжущего с шамотом, активизированного глиноземистым цементом и микрокремнеземом, позволяют повысить реологию бетонной смеси, снизить водовяжущее отношение при синтезе новообразований.

Введение в состав пластифицирующей добавки в присутствии шамота существенно повышает водоудерживающую способность формовочной смеси и снижает ее расслаиваемость. При равной подвижности смесь композиционного вяжущего с пластифицирующей добавкой отличается большей вязкостью, значительно меньшей расслаиваемостью и большей пластичностью по сравнению с традиционными бетонными смесями.

Изготовление мелкозернистого бетона на таком композиционном вяжущем позволяет сократить время, энерго- и материальные затраты на производство, получить бетоны с высокой водонепроницаемостью и морозостойкостью.

Полученные изделия из высокопрочного мелкозернистого бетона на основе композиционного вяжущего с применением техногенного материала шамота заявляемого состава имеют характеристики, которые существенно превосходят свойства прототипа, что свидетельствует о дополнительных процессах минералообразования.

В этом случае обеспечивается минимальная пористость искусственного камня за счет кристаллизации новообразований (гидросиликатов и гидроалюминатов кальция) вокруг зерен отсева дробления кварцитопесчанника, что позволяет получить мелкозернистый бетон с плотной структурой и низкой пористостью.

Кроме того, кремнеземсодержащие компоненты химически связывают портландит, образующийся при гидратации портландцемента, в низкоосновные гидросиликаты кальция, что дополнительно упрочняет структуру получаемого материала.

Полученный высокопрочный мелкозернистый бетон на основе композиционного вяжущего с применением техногенного материала шамота удовлетворяет всем поставленным задачам. Получен бетон со сниженным расходом портландцемента - 20 масс. % (прототип 25,6 масс. %), для приготовления которого применяли композиционное вяжущее с техногенным материалом шамотом,

с высокой прочностью при сжатии в возрасте 28 суток - 80,0-81,5 МПа (прототип 79,0 МПа);

с низким водопоглощением 0,8% по массе (прототип 1,3% по массе);

с высокой плотностью - 2380 кг/м3 (определяли по ГОСТ 12730.1-78), что соответствует требованиям для высокопрочных бетонов.

Кроме этого дополнительным преимуществом является применение техногенного материала – шамота - в качестве сырья, тем самым сокращая занимаемые ими производственные площади.

Похожие патенты RU2625410C1

название год авторы номер документа
Высокопрочный мелкозернистый бетон на основе композиционного вяжущего с использованием техногенного материала 2020
  • Лесовик Валерий Станиславович
  • Толстой Александр Дмитриевич
  • Лесовик Руслан Валерьевич
  • Ахмед Ахмед Анис Ахмед
  • Подгорный Даниил Сергеевич
  • Аласханов Арби Хамидович
  • Аль-Бу-Али Уатик Саед Джасаам
RU2738882C1
ВЫСОКОПРОЧНЫЙ МЕЛКОЗЕРНИСТЫЙ БЕТОН НА ОСНОВЕ КОМПОЗИЦИОННОГО ВЯЖУЩЕГО С ПРИМЕНЕНИЕМ ТЕХНОГЕННОГО СЫРЬЯ 2016
  • Толстой Александр Дмитриевич
  • Лесовик Валерий Станиславович
  • Ковалева Ирина Александровна
  • Якимович Игорь Валентинович
RU2627811C1
ВЫСОКОПРОЧНЫЙ САМОУПЛОТНЯЮЩИЙСЯ МЕЛКОЗЕРНИСТЫЙ БЕТОН 2022
  • Лесовик Валерий Станиславович
  • Елистраткин Михаил Юрьевич
  • Сальникова Алёна Сергеевна
  • Воронов Василий Васильевич
RU2796782C1
Высокопрочный порошково-активированный бетон 2020
  • Ерофеев Владимир Трофимович
  • Емельянов Денис Владимирович
  • Родин Александр Иванович
  • Фомичев Валерий Тарасович
  • Матвиевский Александр Анатольевич
  • Ерофеева Ирина Владимировна
  • Волков Александр Павлович
  • Богатов Андрей Дмитриевич
  • Казначеев Сергей Валерьевич
  • Аль Дулайми Салман Давуд Салман
  • Сальникова Анжелика Игоревна
RU2738150C1
Высокопрочный бетон на основе композиционного вяжущего 2020
  • Ерофеев Владимир Трофимович
  • Емельянов Денис Владимирович
  • Родин Александр Иванович
  • Волков Александр Павлович
  • Матвиевский Александр Анатольевич
  • Фомичев Валерий Тарасович
  • Ерофеева Ирина Владимировна
  • Богатов Андрей Дмитриевич
  • Казначеев Сергей Валерьевич
  • Мохамад Али Саад Буши
  • Сальникова Анжелика Игоревна
RU2738151C1
Самоуплотняющийся бетон 2018
  • Федюк Роман Сергеевич
  • Козлов Павел Геннадьевич
  • Кудряшов Сергей Робертович
RU2679322C1
МЕЛКОЗЕРНИСТЫЙ БЕТОН 2011
  • Хозин Вадим Григорьевич
  • Мугинов Хамат Габбасович
  • Морозов Николай Михайлович
  • Степанов Сергей Викторович
RU2473492C1
МЕЛКОЗЕРНИСТЫЙ БЕТОН 2011
  • Хозин Вадим Григорьевич
  • Морозов Николай Михайлович
  • Степанов Сергей Викторович
  • Боровских Игорь Викторович
  • Хохряков Олег Викторович
  • Мугинов Хамат Габбасович
  • Авксентьев Владислав Игоревич
RU2473493C1
Мелкозернистая бетонная смесь 2017
  • Балыков Артемий Сергеевич
  • Низина Татьяна Анатольевна
RU2649996C1
Высокопрочный порошково-активированный бетон 2020
  • Ерофеев Владимир Трофимович
  • Фомичев Валерий Тарасович
  • Матвиевский Александр Анатольевич
  • Емельянов Денис Владимирович
  • Родин Александр Иванович
  • Карпушин Сергей Николаевич
  • Ерофеева Ирина Владимировна
  • Богатов Андрей Дмитриевич
  • Казначеев Сергей Валерьевич
  • Мохамад Али Саад Буши
  • Сальникова Анжелика Игоревна
RU2743909C1

Реферат патента 2017 года ВЫСОКОПРОЧНЫЙ МЕЛКОЗЕРНИСТЫЙ БЕТОН НА ОСНОВЕ КОМПОЗИЦИОННОГО ВЯЖУЩЕГО С ИСПОЛЬЗОВАНИЕМ ТЕХНОГЕННОГО СЫРЬЯ

Изобретение относится к области строительных материалов, в частности к сырьевой смеси для приготовления высокопрочного мелкозернистого бетона на основе композиционного вяжущего с применением техногенного материала, и может быть использовано для изготовления элементов каркаса зданий и сооружений как в гражданском, так и в промышленном строительстве. Технический результат - изобретение позволяет получить высокопрочный мелкозернистый бетон с применением техногенного материала шамота в качестве наполнителя, обладающий низким расходом портландцемента в составе сырьевой смеси, низким водопоглощением, при сохранении его высокой прочности и плотности. Высокопрочный мелкозернистый бетон на основе композиционного вяжущего с применением техногенного материала шамота, содержит портландцемент, активную добавку, наполнитель, заполнитель, пластифицирующую добавку и воду; в качестве активной добавки используется глиноземистый цемент и микрокремнезем; в качестве наполнителя - техногенный материал шамот с удельной поверхностью 450-500 м2/кг; в качестве заполнителя - кварцевый песок фракции 0,63-1,25 мм и отсев дробления кварцитопесчаника фракции 1,25 мм; в качестве пластифицирующей добавки - гиперпластификатор Melflux 2651 F и воду при следующем соотношении компонентов, масс. %: портландцемент - 20,0-21,0, глиноземистый цемент - 2,0-2,1, микрокремнезем - 2,0, техногенный материал шамот - 0,7-1,7, кварцевый песок - 20,5-21,5, отсев дробления кварцитопесчаника - 46,5-47,5, гиперпластификатор Melflux 2651 F- 0,2, вода - остальное. 1 табл.

Формула изобретения RU 2 625 410 C1

Высокопрочный мелкозернистый бетон на основе композиционного вяжущего с применением техногенного материала шамота, содержащий портландцемент, активную добавку, наполнитель, заполнитель, пластифицирующую добавку и воду, отличающийся тем, что в качестве активной добавки используется глиноземистый цемент и микрокремнезем, в качестве наполнителя - техногенный материал шамот с удельной поверхностью 450-500 м2/кг, в качестве заполнителя - кварцевый песок фракции 0,63-1,25 мм и отсев дробления кварцитопесчаника фракции 1,25 мм, в качестве пластифицирующей добавки - гиперпластификатор Melflux 2651 F при следующем соотношении компонентов, масс. %:

портландцемент 20,0-21,0 глиноземистый цемент 2,0-2,1 микрокремнезем 2,0 техногенный материал шамот 0,7-1,7 кварцевый песок 20,5-21,5 отсев дробления кварцитопесчаника 46,5-47,5 гиперпластификатор Melflux 2651 F 0,2 вода остальное

Документы, цитированные в отчете о поиске Патент 2017 года RU2625410C1

СЫРЬЕВАЯ СМЕСЬ ДЛЯ ВЫСОКОПРОЧНОГО БЕТОНА С НАНОДИСПЕРСНОЙ ДОБАВКОЙ 2011
  • Урханова Лариса Алексеевна
  • Бардаханов Сергей Прокопьевич
  • Лхасаранов Солбон Александрович
RU2471752C1
СТРОИТЕЛЬНЫЙ РАСТВОР 2012
  • Сватовская Лариса Борисовна
  • Соловьева Валентина Яковлевна
  • Касаткина Анна Владимировна
  • Степанова Ирина Витальевна
  • Соловьев Дмитрий Вадимович
RU2485067C1
ЛЕГКИЙ ФИБРОБЕТОН 2011
  • Зайцев Александр Александрович
RU2502709C2
БЕТОННАЯ СМЕСЬ 2014
  • Акулова Марина Владимировна
  • Щепочкина Юлия Алексеевна
  • Акимов Максим Игоревич
  • Потемкина Ольга Владимировна
RU2580679C1
DE 202013011896 U1, 23.10.2014.

RU 2 625 410 C1

Авторы

Лесовик Валерий Станиславович

Толстой Александр Дмитриевич

Ковалева Ирина Александровна

Даты

2017-07-13Публикация

2016-05-30Подача