Способ определения температурного коэффициента скорости ультразвука Российский патент 2017 года по МПК G01H5/00 G01N29/04 

Описание патента на изобретение RU2626571C1

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения температурного коэффициента скорости ультразвука в твердых телах.

Известен способ определения температурного коэффициента скорости ультразвука, заключающийся в измерении изменений с температурой временных интервалов между эхо-импульсами из двух слоев иммерсионной жидкости с образца с фиксированными расстояниями между двумя преобразователями и между одним из преобразователей и ближайшей поверхностью образца (Недбай Александр Иванович. Способ определения температурного коэффициента скорости ультразвука (RU 1742632).

В качестве прототипа выбран способ определения температурного коэффициента скорости ультразвука, заключающийся в том, что в образце возбуждают бегущую ультразвуковую волну, измеряют ее скорость, нагревают образец до заданной температуры; повторно определяют скорость и по результатам измерений рассчитывают температурный коэффициент скорости ультразвука. (Авторское свидетельство СССР №325511, кл. G01Н 5/00, 1972 (прототип)).

Недостатком указанных выше способов является то, что в общем случае температурный коэффициент не является константой и зависит от структурного состояния материала, изменяющегося, например, в результате пластического деформирования, поэтому при указанных выше способах определение численного значения температурного коэффициента необходимо было бы производить после каждого акта пластического деформирования, что трудоемко и не всегда осуществимо.

Задачей, на достижение которого направлено данное изобретение, является повышение точности определения скорости распространения упругих волн в твердых телах при различных температурах и величинах пластической деформации.

Технический результат достигается тем, что, как и в прототипе, в образце возбуждают бегущую ультразвуковую волну, измеряют ее скорость, нагревают образец до заданной температуры, повторно определяют скорость и по результатам измерений рассчитывают температурный коэффициент скорости ультразвука.

Новым является то, что температурный коэффициент определяют как минимум для двух значений величины пластической деформации и устанавливают зависимость температурного коэффициента от величины пластической деформации, которую используют в дальнейшем для определения температурного коэффициента при промежуточных значениях величины пластической деформации.

Сущность предлагаемого способа заключается в следующем.

В материале возбуждают бегущую ультразвуковую волну, измеряют ее скорость, нагревают образец до заданной температуры, повторно определяют скорость и по результатам измерений рассчитывают температурный коэффициент скорости ультразвука. Затем материал деформируют на определенную величину пластической деформации. Затем в деформированном материале возбуждают бегущую ультразвуковую волну, измеряют ее скорость, нагревают образец до заданной температуры, повторно определяют скорость и по результатам измерений рассчитывают температурный коэффициент скорости ультразвука в деформированном материале. Получают зависимость температурного коэффициента скорости ультразвука от деформации.

Для определения величины пластической деформации измеряют время распространения поперечных упругих волн, поляризованных вдоль и поперек оси деформирования. Рассчитывают параметр акустической анизотропии, зависящий от величины пластической деформации и не зависящий от температуры по формуле

где τzx, τzy - время распространения поперечных упругих волн, поляризованных вдоль и поперек оси деформирования.

Расчет пластической деформации производят с помощью выражения:

где ΔА=А-А0, А0 - значение параметра акустической анизотропии в недеформированном образце, А - значение параметра акустической анизотропии, соответствующее текущей величине пластической деформации, kε - коэффициент, определяемый из эксперимента.

Таким образом, предлагаемый способ позволяет учесть влияние температуры и пластического деформирования на температурный коэффициент скорости распространения акустических колебаний в твердых телах, а значит, повысить точность определения скорости распространения упругих волн в твердых телах при различных температурах и величинах пластической деформации.

Пример применения

В образце из алюминиевого сплава возбуждали ультразвуковые продольные и поперечные волны, измеряли скорости их распространения. Затем образец медленно охлаждали и в процессе охлаждения повторно определяли скорости распространения волн. Затем образец подвергали пластическому деформированию при одноосном растяжении на величину 16% и снова при медленном охлаждении определяли скорости распространения ультразвуковых волн. При последующей операции образец подвергали пластическому деформированию при одноосном растяжении на величину 25% и снова при медленном охлаждении определяли скорости распространения ультразвуковых волн. Строили график зависимости изменения скорости распространения продольных волн от изменения температуры (фиг. 1).

Рассчитывали температурный коэффициент скорости ультразвука при различных значениях величины пластической деформации. Зависимость температурного коэффициента скорости ультразвука в алюминиевом сплаве от величины пластической деформации ε можно представить в виде:

Kv=-4.1⋅ε-1.24.

Для каждого значения величины пластической деформации рассчитывали параметр акустической анизотропии по формуле (1). Зная величину пластической деформации и соответствующее значение параметра акустической анизотропии, определили коэффициент kε=-2014. Как показали экспериментальные исследования, параметр акустической анизотропии не зависит от температуры, коэффициент kε не изменяется в процессе нагрева в исследуемом диапазоне температур.

Окончательное выражение для расчета температурного коэффициента скорости ультразвука в алюминиевом сплаве принимает следующий вид:

Kv=8057.4⋅ΔА-1.24.

Похожие патенты RU2626571C1

название год авторы номер документа
Способ ультразвукового контроля поврежденности материалов при различных видах механического разрушения 2023
  • Гончар Александр Викторович
  • Мишакин Василий Васильевич
RU2803019C1
СПОСОБ ОЦЕНКИ МЕХАНИЧЕСКИХ СВОЙСТВ МЕТАЛЛОВ ПРИ ПЛАСТИЧЕСКОМ ДЕФОРМИРОВАНИИ 2002
  • Кушнаренко В.М.
  • Чирков Ю.А.
  • Самигулов И.Н.
  • Агишев В.Н.
RU2251101C2
Способ пластической деформации алюминия и его сплавов 2016
  • Макаров Сергей Викторович
  • Плотников Владимир Александрович
RU2661980C1
Способ пластической деформации алюминия и его сплавов 2019
  • Макаров Сергей Викторович
  • Плотников Владимир Александрович
  • Евтушенко Евгений Евгеньевич
RU2724209C1
Способ определения температурного коэффициента скорости ультразвука 1981
  • Лысенко Михаил Васильевич
  • Пустовалов Геннадий Алексеевич
  • Сабаев Александр Сергеевич
SU968622A1
Способ оценки модуля объемного сжатия материала 1989
  • Сазонов Василий Глебович
SU1739279A1
Способ пластической деформации сплавов из алюминия 2016
  • Макаров Сергей Викторович
  • Плотников Владимир Александрович
  • Лысиков Михаил Валерьевич
RU2653741C2
Способ испытания листового металла 2018
  • Коротков Виктор Анатольевич
  • Ларин Сергей Николаевич
  • Платонов Валерий Иванович
  • Исаева Анна Николаевна
  • Яковлев Сергей Сергеевич
  • Романов Павел Витальевич
RU2682127C1
СПОСОБ ИЗМЕРЕНИЯ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ В ОБОДЬЯХ ЦЕЛЬНОКАТАНЫХ ЖЕЛЕЗНОДОРОЖНЫХ КОЛЕС 2012
  • Дымкин Григорий Яковлевич
  • Краснобрыжий Станислав Андреевич
  • Шевелев Александр Владимирович
RU2497108C1
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ МОЛЕКУЛЯРНО-МАССОВОГО РАСПРЕДЕЛЕНИЯ ПОЛИМЕРА В РАСТВОРЕ 2011
  • Битюков Виталий Ксенофонтович
  • Хвостов Анатолий Анатольевич
  • Третьякова Наталья Николаевна
RU2475732C1

Иллюстрации к изобретению RU 2 626 571 C1

Реферат патента 2017 года Способ определения температурного коэффициента скорости ультразвука

Способ может быть использован в машиностроении, гидроэнергетике и других отраслях промышленности, требующих применения в производстве ультразвукового контроля. Для определения температурного коэффициента скорости ультразвука используются данные об изменении акустических характеристик материала. Сущность способа заключается в том, что в недеформированном и деформированном материале при разных температурах возбуждают упругие волны, определяют скорость их распространения и по результатам измерений рассчитывают температурный коэффициент скорости ультразвука. Используя полученную аналитическую зависимость, можно определять температурный коэффициент для промежуточных значений температуры и величины пластической деформации, причем деформацию можно определять акустическим способом, измеряя параметр акустической анизотропии, не зависящий от температуры. Технический результат – повышение точности получаемых данных. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 626 571 C1

1. Способ определения температурного коэффициента скорости ультразвука, заключающийся в том, что в образце возбуждают бегущую ультразвуковую волну, измеряют ее скорость, нагревают образец до заданной температуры, повторно определяют скорость и по результатам измерений рассчитывают температурный коэффициент скорости ультразвука, отличающийся тем, что температурный коэффициент определяют как минимум для двух значений величины пластической деформации и устанавливают зависимость температурного коэффициента от величины пластической деформации, которую используют в дальнейшем для определения температурного коэффициента при промежуточных значениях величины пластической деформации.

2. Способ определения температурного коэффициента скорости ультразвука в твердых телах по п. 1, отличающийся тем, что величину пластической деформации определяют по времени прохождения поперечных упругих волн различной поляризации.

Документы, цитированные в отчете о поиске Патент 2017 года RU2626571C1

СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРНОГО КОЭФФИЦИЕНТА СКОРОСТИ РАСПРОСТРАНЕНИЯ АКУСТИЧЕСКИХ КОЛЕБАНИЙВ СРЕДАХ 0
  • Изобретеип Н. И. Бражников, В. И. Крылович А. Д. Солодухип
  • Институт Тепло Массообмена Белорусской Сср
SU325511A1
Способ определения температурного коэффициента скорости ультразвука 1981
  • Лысенко Михаил Васильевич
  • Пустовалов Геннадий Алексеевич
  • Сабаев Александр Сергеевич
SU968622A1
А.В
Гончар, В.В
Мишакин, "ОЦЕНКА ВЕЛИЧИНЫ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ В СТРУКТУРНО-НЕОДНОРОДНЫХ МАТЕРИАЛАХ С ПОМОЩЬЮ УЛЬТРАЗВУКОВЫХ И МЕТАЛЛОГРАФИЧЕСКИХ ИССЛЕДОВАНИЙ", Труды Нижегородского государственного технического университета им
Р.Е
Алексеева, номер 3(96), 2012 г., с.221-226
Способ определения температурного коэффициента скорости ультразвука 1989
  • Недбай Александр Иванович
SU1742632A1
Способ определения температурного коэффициента скорости ультразвука 1989
  • Недбай Александр Иванович
SU1732177A1
Способ оценки внутренних напряжений в образце 1988
  • Янышев Павел Климентьевич
SU1682906A1

RU 2 626 571 C1

Авторы

Гончар Александр Викторович

Мишакин Василий Васильевич

Даты

2017-07-28Публикация

2016-10-31Подача