Изобретение относится к области медицины и созданию новых материалов биомедицинского назначения, которые могут быть использованы при создании биоактивных кремний-содержащих кальций-фосфатных (Si-ГА) покрытий на имплантатах, при создании композитов на основе фосфатов кальция и сплавах титана.
Известен способ нанесения покрытий на изделия из титана (патент RU 2453630), технический результат, в котором достигается за счет обработки поверхности титана углекислым газом, образующимся при реакции разложения гидрокарбоната кальция в водном растворе при соблюдении следующих условий: раствор гидрокарбоната натрия (ч.д.а.) приливают к раствору нитрата или хлорида кальция (х.ч.), соблюдая стехиометрическое соотношение реагентов 2:1. После начала выделения углекислого газа в реакционную смесь помещают титановые или с титановым покрытием изделия, например пластины или штифты. Для устранения концентрационных потоков при формировании кристаллов смесь периодически перемешивают, при этом начинается более интенсивное выделение пузырьков углекислого газа. Толщина и адгезия покрытия, а также размер образующихся на титане кристаллов карбоната кальция изменяются в зависимости от времени протекания реакции и температуры. Прочные покрытия можно получить как минимум через десять минут после начала реакции при 20°С. Промытые пленки оставляют как минимум на сутки в контакте с раствором 0.6 М (NH4)2HPO4, затем как минимум на сутки в растворе одномолярного Са(NO3)2, затем как минимум на сутки в растворе 0.6 М (NH4)2HPO4. Образцы промывают дистиллированной водой, сушат на воздухе при температуре 20°С. Для получения композиционных покрытий, содержащих биополимеры, титан с полученным кальцитным покрытием погружают в раствор желатина и/или хондроитинсульфата. Другие модификаторы вводят в систему с самого начала синтеза кальциевого покрытия.
Наиболее близким по технической сущности к заявляемому является способ получения биомитического покрытия в среде синтетической жидкости (SBF), (Xiaohua Yu, Mei Wei Controlling Bovine Serum Albumin Release from Biomimetic Calcium Phosphate Coatings // Journal of Biomaterials and Nanobiotechnology, 2011, 2, 28-35). По данному способу пластинки титана вертикально помещают в 1,5 мл пробирку, содержащую 1,0 мл M-SBF, затем инкубировали в водяной бане при 42°С в течение 24 час. Затем в каждую пробирку, после того как пластинка была погружена, добавляли бычий сывороточный альбумин (BSA) в течение 0, 4, 6 и 8 ч соответственно. В результате чего конечная концентрация бычего сывороточного альбумина (BSA) соответствовала 50 мкг/мл. После 24 ч инкубации в SBF все пластинки вынимают, тщательно промывают деионизированной водой и сушат при комнатной температуре.
Задачей заявляемого изобретения является разработка способа получения биомиметического кремний-содержащего кальций-фосфатное покрытие на сплавах титана из модельного раствора межклеточной жидкости человека. Ввиду того что кремний играет важную роль в физиологических процессах роста и перестройки костной и хрящевой ткани, получение кремний-замещенного гидроксилапатита (Si-ГА) и синтез покрытий на его основе представляют собой перспективную и актуальную физико-химическую задачу.
Указанный технический результат достигается тем, что предложен способ получения биомиметического кремний-содержащего кальций-фосфатного покрытия на сплавах титана из модельного раствора межклеточной жидкости человека, в котором предварительно готовят раствор состава: CaCl2 - 3.7424 г, MgCl2 - 0.6092 г, К2НРО4 - 2.8716 г, NaHCO3 - 4.5360 г, Na2SO4 - 0,0144 г, NaCl - 8.8784 г, Na2SiO3 - 0,0488÷0,2444 г, полученный раствор осаждают при: температуре T1=20÷25°С, значении рН 7.40±0.05, в течение 48 часов, затем осадок промывают, фильтруют, высушивают при температуре Т2=80÷85°С в течение 5 часов, из полученного кремний-содержащего кальций-фосфатного порошка готовят водную суспензию при концентрации С=1 масс. %, наносят суспензию капиллярным методом на сплав титана, сушат при температуре Т3=20÷25°С в течение 1 часа, затем указанный сплав с предварительно нанесенным слоем фосфата кальция опускают в полученный предварительно модельный раствор межклеточной жидкости человека на 3 суток, после этого извлекают из раствора и проводят сушку при температуре Т4=20÷25°С в течение 24 часов.
Возможность достижения технического результата обеспечивается тем, что в предложенном способе предварительно готовят раствор состава: CaCl2 - 3.7424 г, MgCl2 - 0.6092 г, К2НРO4 - 2.8716 г, NaHCO3 - 4.5360 г, Na2SO4 - 0,0144 г, NaCl - 8.8784 г, Na2SiO3 - 0,0488÷0,2444 г, полученный раствор осаждают при: температуре Т1=20÷25°С, значении рН 7.40±0.05 в течение 48 часов, затем осадок промывают, фильтруют, высушивают при температуре Т2=80-85°С в течение 5 часов, из полученного кремний-содержащего кальций-фосфатного порошка готовят водную суспензию при концентрации С=1 масс. %, наносят суспензию капилляром с диаметром d=0,2÷0,7 мм тонким слоем на сплав титана ВТ 1-00, сушат при температуре Т3=20÷25°С в течение 1 часа, затем указанный сплав титана ВТ 1-00 с предварительно нанесенным слоем фосфата кальция опускают в полученный предварительно модельный раствор межклеточной жидкости человека на 3 суток, после этого извлекают из раствора и проводят сушку при температуре Т4=20÷25°С в течение 24 часов.
Используют результаты измерения краевого угла смачивания и поверхностного натяжения приготовленных суспензий с разным содержанием кремний-содержащего агента. На основании уравнения Юнга - Дюпре была рассчитана энергию адгезии наносимой суспензии кремний-содержащего фосфата кальция к твердой поверхности титановых образцов
Wa=σ01(1+cosΘ), (19)
где Wa - энергия адгезии, σ01 - поверхностное натяжение на границе газ – жидкость,
cosΘ - косинус краевого угла смачивания.
В таблице 1 представлены адгезионные характеристики высушенной и нанесенной суспензии кремний-содержащего фосфата кальция на сплаве титана ВТ 1-00.
Установлено, что с увеличением концентрации силикат-иона, для образцов, синтезированных с неорганическим носителем иона SiO44-, происходит падение поверхностного натяжения и краевого угла смачивания, это обусловлено частичным растворением полученного фосфата кальция и образованием в растворе неорганических ПИВ. Для характеристики получаемых покрытий важным является соотношение значений энергии адгезии и когезии. Для установления соотношения между энергии адгезии и когезии (Wk) преобразуем уравнения Юнга- Дюпре:
так как , то
Известно, что если это соотношение близко к единице, то наблюдается хорошее смачивание и т.д.
Для оценки параметров смачивания обычно используют соотношение этих двух энергий, при этом если оно близко к 1, то наблюдается смачивание и т.д. Таким образом, использование суспензии при концентрации С=1% масс. кремний-содержащего (Na2SiO3)) фосфата кальция является оптимальным.
Полученные покрытия были проанализированы с помощью оптической микроскопии. При изучении поверхностных и морфологических характеристик полученных кальций- фосфатных покрытий, модифицированных силикат ионами, получено, что осаждение Si-ГА на поверхности титановых подложек происходит по-разному, в зависимости от времени выдерживания в растворе.
На фиг. 1 представлена микрофотография агрегатов на поверхности титана при осаждении Si-ГА на титановых подложках продолжительностью 3 суток.
На фиг. 2 представлена микрофотография агрегатов на поверхности титана при осаждении Si-ГА на титановых подложках продолжительностью 6 суток.
На фиг. 3 представлена микрофотография агрегатов на поверхности титана при осаждении Si-ГА на титановых подложках продолжительностью 12 суток.
При продолжительности времени выдерживания в модельном растворе трое суток получается равномерное, плотное, высокодисперсное покрытие и наблюдается рост кристаллов гидроксилапатита в виде объемных каплеобразных агрегатов Si-ГА, фиг. 1. Отмечается выравнивание роста кристаллов в более структурированную форму. Такие структуры соответствуют биогенному апатиту.
Увеличение времени выдерживания титанового образца в модельном растворе приводит к неравномерному росту кристаллов в виде столбчатой формы, что говорит о начале структурирования поверхности Si-ГА. На данном этапе наблюдается разная высота сформировавшихся агрегатов, фиг. 2.
Дальнейшее увеличение времени выдерживания в течение 6 суток в модельном растворе характеризуется образованием неравномерного покрытия, при этом отмечен рост кристаллов в виде дендритов. Зафиксировано начало роста кристаллов в виде цилиндрических столбцов, что характеризует начало структурирования Si-ГА на поверхности подложки, фиг. 3.
Таким образом, заявляемый способ позволяет получить качественное равномерное, плотное, высокодисперсное покрытие в виде объемных каплеобразных агрегатов Si-ГА, при использовании суспензии Si-ГА с 1% содержанием Na2SiO3 и времени выдерживания в модельном растворе 3 суток.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения биомиметического кальций-фосфатного модифицированного желатином покрытия на сплавах титана из модельного раствора межклеточной жидкости человека | 2018 |
|
RU2702991C1 |
СПОСОБ ПОЛУЧЕНИЯ МОНОФАЗНОГО КРИСТАЛЛИЧЕСКОГО КРЕМНИЙ-ЗАМЕЩЕННОГО ГИДРОКСИЛАПАТИТА | 2014 |
|
RU2580728C1 |
СПОСОБ ПОЛУЧЕНИЯ БИОМИМЕТИЧЕСКОГО КАЛЬЦИЙ-ФОСФАТНОГО ПОКРЫТИЯ НА СПЛАВАХ ТИТАНА ИЗ МОДЕЛЬНОГО РАСТВОРА СИНОВИАЛЬНОЙ ЖИДКОСТИ ЧЕЛОВЕКА | 2013 |
|
RU2532350C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКОГО СИЛИКАТЗАМЕЩЕННОГО КАРБОНАТГИДРОКСИАПАТИТА | 2014 |
|
RU2555337C1 |
Способ получения наноразмерного гидроксиапатита | 2020 |
|
RU2736048C1 |
Способ получения модифицированного биопокрытия на имплантате из титана (варианты) | 2019 |
|
RU2693468C1 |
СПОСОБ ПОЛУЧЕНИЯ БИОСОВМЕСТИМОГО ПОКРЫТИЯ НА СТОМАТОЛОГИЧЕСКИХ ИМПЛАНТАТАХ | 2012 |
|
RU2507315C1 |
СПОСОБ ФОРМИРОВАНИЯ БИОАКТИВНОГО ПОКРЫТИЯ НА ПОВЕРХНОСТИ ЭНДОПРОТЕЗОВ КРУПНЫХ СУСТАВОВ | 2015 |
|
RU2598626C1 |
КАЛЬЦИЙ-ФОСФАТНОЕ ПОКРЫТИЕ НА ТИТАНЕ И ТИТАНОВЫХ СПЛАВАХ И СПОСОБ ЕГО НАНЕСЕНИЯ | 2005 |
|
RU2291918C1 |
ПОКРОВНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ), И ИМПЛАНТАТ ДЛЯ БИОМЕДИЦИНСКОГО ИСПОЛЬЗОВАНИЯ (ВАРИАНТЫ) | 1993 |
|
RU2124329C1 |
Изобретение относится к области медицины. Описан способ получения биомиметического кремний-содержащего кальций-фосфатного покрытия на сплавах титана из модельного раствора межклеточной жидкости человека, в котором предварительно готовят раствор состава: CaCl2 - 3.7424 г, MgCl2 - 0.6092 г, К2НРO4 - 2.8716 г, NaHCO3 - 4.5360 г, Na2SO4 - 0,0144 г, NaCl - 8.8784 г, Na2SiO3 - 0,0488÷0,2444 г, полученный раствор осаждают при: температуре T1=20÷25°С, значении рН 7.40±0.05 в течение 48 часов, затем осадок промывают, фильтруют, высушивают при температуре Т2=80÷85°С в течение 5 часов, из полученного кремний-содержащего кальций-фосфатного порошка готовят водную суспензию при концентрации С=1÷5 масс. %, наносят суспензию капиллярным методом на сплав титана, сушат при температуре Т3=20÷25°С в течение 1 часа, затем указанный сплав опускают в полученный предварительно модельный раствор межклеточной жидкости человека на 3 суток, после этого извлекают из раствора и проводят сушку при температуре T4=20÷25°С в течение 24 часов. Способ направлен на получение кремний-замещенного гидроксиапатита, а кремний играет важную роль в физиологических процессах роста и перестройки костной и хрящевой ткани. 3 ил., 1 табл.
Способ получения биомиметического кремний-содержащего кальций-фосфатного покрытия на сплавах титана из модельного раствора межклеточной жидкости человека, в котором предварительно готовят раствор состава: CaCl2 - 3.7424 г, MgCl2 - 0.6092 г, K2HPO4 - 2.8716 г, NaHCO3 - 4.5360 г, Na2SO4 - 0,0144 г, NaCl - 8.8784 г, Na2SiO3 - 0,0488÷0,2444 г, полученный раствор осаждают при: температуре T1=20÷25°C, значении рН 7.40±0.05 в течение 48 часов, затем осадок промывают, фильтруют, высушивают при температуре Т2=80÷85°C в течение 5 часов, из полученного кремний-содержащего кальций-фосфатного порошка готовят водную суспензию при концентрации С=1 масс. %, наносят суспензию капиллярным методом на сплав титана, сушат при температуре Т3=20÷25°C в течение 1 часа, затем указанный сплав с предварительно нанесенным слоем фосфата кальция опускают в полученный предварительно модельный раствор межклеточной жидкости человека на 3 суток, после этого извлекают из раствора и проводят сушку при температуре Т4=20÷25°C в течение 24 часов.
Xiaohua Yu, Mei Wei, Controlling Bovine Serum Albumin Release from Biomimetic Calcium Phosphate Coatings, Journal of Biomaterials and Nanobiotechnology, 2011, 2, 28-35 | |||
СПОСОБ МОДЕЛИРОВАНИЯ КОСТНОЙ КРИСТАЛЛИЗАЦИИ ПРИ КОКСАРТРОЗЕ IN VITRO | 2012 |
|
RU2496150C1 |
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ НА ИЗДЕЛИЯ ИЗ ТИТАНА | 2011 |
|
RU2453630C1 |
Авторы
Даты
2017-07-28—Публикация
2016-08-01—Подача