СОСТАВ ЭЛАСТИЧНОГО АНТИБАКТЕРИАЛЬНОГО МАТЕРИАЛА Российский патент 2017 года по МПК A61L15/24 A61L15/46 A61L27/16 A61L27/54 A61L29/04 A61L29/12 A61L29/16 C08K5/19 

Описание патента на изобретение RU2629603C1

Изобретение относится к области высоконаполненных эластомерных изделий, а именно к получению составов для покрытий, предназначенных для защиты изделий из полимерных материалов (резин, термопластов, реактопластов, термоэластопластов) от прикрепления бактерий и развития бактериальных колоний на поверхности изделий.

В настоящее время существенной проблемой является неконтролируемое размножение и колониеобразование бактерий на поверхности ряда изделий, в том числе пищевого и медицинского назначения. Бактериальные колонии способствуют распространению заражения, порче оборудования, продуктов питания и т.п., провоцируют сложности эксплуатации изделий и оборудования из-за необходимости регулярной стерилизации. В ряде случаев, например, при колониеобразовании на упаковочных материалах регулярная стерилизация невозможна; в некоторых случаях проведение стерилизации нежелательно или принципиально невозможно. В связи с этим актуальным направлением в материаловедении является разработка защитных антибактериальных покрытий, позволяющих защитить изделия от прикрепления и размножения бактерий длительный срок после первичной стерилизации или без стерилизации вообще.

Известна антибактериальная основа, пригодная, в том числе, для антимикробных покрытий на основе эластомеров, представляющая собой пептидный агент, распределяемый в полимерной основе и способный высвобождаться [патент EP 2431429 A2, опубл. 21.03.2012].

Существенным преимуществом композиций является комбинированная антибактериальная и противогрибковая (фунгицидная) активность, а недостатком - высокая стоимость биосинтетического белкового сырья, а также сложность введения в эластомерную основу.

Из уровня техники известна антимикробная полимерная композиция для покрытий, пригодная для использования в медицинских целях, состоящая из полимерной основы, водорастворимой и водонерастворимой карбоновых кислот, антимикробного агента - соли олигодинамического металла и сульфонилмочевины, растворенных в общем растворителе [патент US 4933178 A, опубл. 12.06.1990].

Преимуществом композиции является постепенное высвобождение ионов металлов, обеспечивающих олигодинамический эффект. Недостатком является необходимость взаимного растворения всех компонентов композиции, что затрудняет выбор полимерной основы, особенно в случае эластомеров.

Также известна композиция на основе этиленвинилацетатного сополимера, содержащая триклозан в качестве антимикробного агента и нестероидные противовоспалительные препараты в сочетании с хелатирующими агентами в качестве ингибиторов адгезии бактерий [патент US 8105520 B2, опубл. 31.01.2012, - был перепутан номер].

Данный состав отличается универсальностью использования, в том числе пригодностью для нанесения покрытий путем экструзии и из раствора в органическом растворителе. Недостатком является то, что действие указанных антимикробных компонентов ослабевает со временем за счет обеднения поверхностного слоя материала из-за вымывания и замедленной диффузии компонентов в матрице полимера.

Наиболее близким аналогом предлагаемого изобретения, принятым за прототип, является состав эластичного противомикробного (антибактериального) материала, содержащий трехблочный термоэластопласт, пластификатор и антимикробную систему, включающую осаждающий агент и осаждаемый им антимикробный агент на основе соединений серебра [заявка на патент US 20050220896 A1, опубл. 06.10.2005]. Состав включает термоэластопласт типа СЭЭПС, СЭБС или СЭПС, пластификатор, осаждающий агент и антимикробный агент на основе соединений серебра.

Преимуществом композиции является «подвод» антимикробного агента к действующей поверхности (контактирующей с рабочей средой) путем выделения и седиментации антимикробного агента во время формования, что придает материалу хорошие антимикробные свойства. Недостатками композиции являются как снижение концентрации антимикробного агента в материале при контакте со средой, так и невозможность использования для нанесения защитных покрытий и, кроме того, негативное влияние соединений серебра на жизнедеятельность организма человека и теплокровных животных.

Технический результат заявленного изобретения заключается в повышении механической прочности и адгезии к покрываемому материалу при создании состава для изготовления эластичных изделий или эластичных антибактериальных покрытий на основе бутадиен-стирольных термоэластопластов, препятствующих колониеобразованию бактерий, и обладающего стабильным пролонгированным антибактериальным эффектом.

Указанный технический результат достигается составом эластичного антибактериального материала, включающим бутадиен-стирольный термоэластопласт типа СБС с содержанием связанного стирола 15-40% масс., биодеградируемый термопласт, выбираемый из L-, D,L- или D-полилактида, поли-(3-гидрокси)бутирата, и поверхностно-активное вещество (ПАВ), в качестве которого используется четвертичная органическая соль аммония с длиной по меньшей мере одного углеводородного радикала не менее C7, при следующем соотношении компонентов, масс. ч. (массовые части):

Бутадиен-стирольный термоэластопласт 100,0 Биодеградируемый термопласт 1,0-10,0 ПАВ 0,1-1,0

В одном предпочтительном варианте осуществления изобретения состав дополнительно содержит пластификатор, в качестве которого используется алифатическое или ароматическое нефтяное масло в количестве 5,0-50,0 масс.ч.

Еще в одном предпочтительном варианте осуществления изобретения состав дополнительно содержит растворитель в количестве 400,0-600,0 масс.ч.

Бутадиен-стирольный термоэластопласт типа СБС с содержанием связанного стирола 15-40% масс. можно использовать следующих марок: ДСТ-30-01, ДСТ-30Р-01 производства ОАО «Воронежсинтезкаучук»; LG 501, LG 411, LG 604 производства LG Chem; или KTR 101, KTR 201 производства Kumho Petrochemical.

Принцип действия изобретения заключается в создании полужидкого переходного слоя на поверхности при нахождении материала, полученного из разработанного состава, в водной среде. Переходный слой формируется за счет незначительной деструкции внешнего слоя материала при нахождении в нем биодеградируемого термопласта, способного гидролизоваться. При наличии в среде клеток бактерий или других микроорганизмов полужидкий переходный слой служит защитой от прикрепления клеток за счет: а) отсутствия доступной твердой поверхности, необходимой для прикрепления клеток, б) выделении поверхностно-активного вещества, снижающего адгезивные свойства придатков клеток микробов и обладающего прямой антибактериальной активностью, в) поддержании концентрации ПАВ на рабочем уровне за счет медленного гидролиза удерживающей ПАВ полимерной матрицы. Полужидкий переходный слой самообновляется при нахождении в рабочей среде, не позволяя бактериям за счет отходов жизнедеятельности подготовить поверхность для прикрепления.

Состав изготавливается путем смешения компонентов в экструдере или смесителе периодического типа либо путем сорастворения компонентов в органическом растворителе.

Ниже приведены примеры осуществления изобретения, которые носят иллюстрирующий характер и не ограничивают возможностей осуществления изобретения.

Примеры 1-5

Композиции, состоящие из 100,0 масс.ч. бутадиен-стирольного термоэластопласта (БСТЭП), 5 масс.ч. пластификатора, 1,0-10,0 масс.ч. полилактида или полигидроксибутирата и 0,5-1,0 масс.ч. ПАВ, получают путем единовременной загрузки и одностадийного смешения в течение 5 мин в смесителе для термопластов периодического типа при температуре 150°C. Композиции после выгрузки прессуются в пластины толщиной 1 мм при помощи гидравлического пресса при температуре 150°C.

Из пластин вырезаются образцы для определения физико-механических характеристик. Испытания проводятся по ГОСТ 270-75. Физико-механические показатели как для настоящих составов, так и для прототипа зависят преимущественно от типа применяемого БСТЭП. Однако следует принимать во внимание существенное изменение свойств композиций при добавлении модифицирующих компонентов.

Также из пластин вырезаются образцы размером 2×2 см для определения адгезии модельных микроорганизмов (Escherichia coli и Staphylococcus aureus) при контакте образца с суспензией жизнеспособных клеток бактерий. Образцы помещаются в суспензию соответствующей бактерии в чашке Петри на время от 2 секунд до 30 суток. По прошествии указанного времени под оптическим микроскопом производится подсчет колониеобразующих единиц (число КОЕ).

Составы композиций приведены в таблице 1.

Результаты физико-механических испытаний приведены в таблице 2.

Результаты измерения адгезии модельных бактерий приведены в таблице 3.

Из результатов, приведенных в таблице 2, видно, что все рассмотренные примеры превосходят прототип по основным физико-механическим показателям.

Из результатов, приведенных в таблице 3, видно, что, несмотря на одинаково успешное противодействие прикреплению бактерий вплоть до 6 суток, прототип уступает разработанной в настоящем изобретении композиции при более длительном нахождении материала в зараженной среде.

Похожие патенты RU2629603C1

название год авторы номер документа
Полимерно-битумная композиция и способ ее получения 2020
  • Фролов Виктор Андреевич
  • Беляев Павел Серафимович
  • Макеев Павел Владимирович
  • Беляев Вадим Павлович
  • Шашков Иван Владимирович
RU2748078C1
Полимерно-битумное вяжущее и способ его приготовления 2020
  • Ядыкина Валентина Васильевна
  • Потапов Евгений Эдуардович
  • Траутваин Анна Ивановна
  • Выродова Кристина Сергеевна
  • Засорин Андрей Владимирович
  • Зубков Денис Геннадьевич
  • Алимпиев Сергей Вячеславович
RU2754709C2
ВЯЖУЩЕЕ ДЛЯ ЦВЕТНОГО АСФАЛЬТОБЕТОНА 2016
  • Калинин Михаил Владимирович
  • Майданова Наталья Васильевна
  • Романенко Юлия Николаевна
  • Фомин Сергей Николаевич
RU2620120C1
СОСТАВ И СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО БИТУМА ДЛЯ ДОРОЖНОГО СТРОИТЕЛЬСТВА 2022
  • Сорокин Игорь Владимирович
  • Поляков Алексей Николаевич
  • Грачев Владимир Иванович
  • Семенов Илья Вячеславович
RU2798340C1
Резино-полимерно-битумное вяжущее и способ его получения 2020
  • Степанов Валерий Федорович
  • Дубина Сергей Иванович
  • Жуков Сергей Николаевич
  • Джафаров Руслан Мамедсалимович
  • Сорокин Алексей Васильевич
  • Лобачев Владимир Александрович
  • Никольский Вадим Геннадиевич
  • Дударева Татьяна Владимировна
  • Красоткина Ирина Александровна
  • Кудрявцев Вячеслав Анатольевич
  • Безштанько Людмила Викторовна
RU2752619C1
КОМПЛЕКСНАЯ ДОБАВКА ДЛЯ САМОВОССТАНАВЛИВАЮЩИХСЯ ЦЕМЕНТОВ 2023
  • Губжоков Виталий Борисович
  • Лившичев Иван Юрьевич
  • Кущев Александр Юрьевич
  • Воронин Антон Александрович
RU2822638C1
Наполненная полимерная композиция и способ изготовления нити для 3D-принтера на ее основе 2022
  • Белозеров Кирилл Сергеевич
  • Широкова Евгения Сергеевна
  • Кузьмин Антон Валерьевич
  • Саетова Наиля Саетовна
  • Крайнова Дарья Андреевна
  • Толстобров Иван Владимирович
RU2790019C1
АНТИКОРРОЗИОННАЯ КОМПОЗИЦИЯ И СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ НА ЕЕ ОСНОВЕ 2013
  • Гусев Денис Олегович
  • Ваниев Марат Абдурахманович
  • Сидоренко Нина Владимировна
  • Ракитин Лука Сергеевич
  • Новаков Иван Александрович
RU2529545C1
МОДИФИКАТОР ДОРОЖНЫХ БИТУМОВ И ПОЛИМЕРНО-БИТУМНОЕ ВЯЖУЩЕЕ НА ЕГО ОСНОВЕ 2015
  • Штепа Сергей Вячеславович
  • Бахов Федор Николаевич
  • Зюкин Сергей Владимирович
RU2604217C1
Полимерно-битумное вяжущее и способ его получения 2021
  • Кемалов Алим Фейзрахманович
  • Брызгалов Николай Иннокентьевич
  • Кемалов Руслан Алимович
  • Валиев Динар Зиннурович
  • Риффель Данил Владимирович
  • Ахметзянов Рустам Русланович
RU2786861C1

Реферат патента 2017 года СОСТАВ ЭЛАСТИЧНОГО АНТИБАКТЕРИАЛЬНОГО МАТЕРИАЛА

Изобретение относится к области фармацевтики, а именно к составу эластичного антибактериального материала, включающему 100 масс. ч. бутадиен-стирольного термоэластопласта типа СБС с содержанием связанного стирола 15-40% мас., 1,0-10,0 мас. ч. биодеградируемого термопласта, выбираемого из L-, D,L- или D-полилактида, поли-(3-гидрокси) бутирата, и 0,1-1,0. масс. ч. поверхностно-активного вещества (ПАВ), в качестве которого используется четвертичная органическая соль аммония с длиной по меньшей мере одного углеводородного радикала не менее С7. Изобретение обеспечивает повышение механической прочности и адгезии к покрываемому материалу при создании состава для изготовления эластичных изделий или эластичных антибактериальных покрытий на основе бутадиен-стирольных термоэластопластов, препятствующих колониеобразованию бактерий, и обладающего стабильным пролонгированным антибактериальным эффектом. 2 з.п. ф-лы, 3 табл., 7 пр.

Формула изобретения RU 2 629 603 C1

1. Состав эластичного антибактериального материала, включающий бутадиен-стирольный термоэластопласт типа СБС с содержанием связанного стирола 15-40% мас., биодеградируемый термопласт, выбираемый из L-, D,L- или D-полилактида, поли-(3-гидрокси)бутирата, и поверхностно-активное вещество (ПАВ), в качестве которого используется четвертичная органическая соль аммония с длиной по меньшей мере одного углеводородного радикала не менее С7, при следующем соотношении компонентов, масс. ч. (массовые части):

Бутадиен-стирольный термоэластопласт 100,0 Биодеградируемый термопласт 1,0-10,0 ПАВ 0,1-1,0

2. Состав по п. 1, характеризующийся тем, что дополнительно содержит пластификатор, в качестве которого используется алифатическое или ароматическое нефтяное масло в количестве 5,0-50,0 масс. ч.

3. Состав по п. 1, характеризующийся тем, что дополнительно содержит растворитель в количестве 400,0-600,0 масс. ч.

Документы, цитированные в отчете о поиске Патент 2017 года RU2629603C1

WO 2010022353 A1, 25.02.2010
WO 2014058822 A1, 17.04.2014
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
СПОСОБ ПОЛУЧЕНИЯ БИОАКТИВНОГО ПОКРЫТИЯ С АНТИБАКТЕРИАЛЬНЫМ ЭФФЕКТОМ 2014
  • Левашов Евгений Александрович
  • Кудряшов Александр Евгеньевич
  • Замулаева Евгения Игоревна
  • Штанский Дмитрий Владимирович
  • Погожев Юрий Сергеевич
  • Потанин Артем Юрьевич
  • Швындина Наталия Владимировна
RU2580627C1

RU 2 629 603 C1

Авторы

Люсова Людмила Ромуальдовна

Ильин Андрей Александрович

Ковалева Анна Николаевна

Шибряева Людмила Сергеевна

Карпова Светлана Геннадиевна

Макаров Олег Викторович

Тарасюк Венера Тахировна

Грачёва Анастасия Юрьевна

Даты

2017-08-30Публикация

2016-11-17Подача