Способ однопозиционного определения угловых координат на источник лазерного излучения Российский патент 2017 года по МПК G01S17/06 G01B9/02 

Описание патента на изобретение RU2630522C1

Изобретение относится к области оценки угловых координат источника оптического излучения и может быть использовано в системах обеспечения вхождения в связь, нацеливания оптических лучей, траекторных измерений.

Наиболее близким по технической сущности (прототипом) к заявляемому изобретению является способ однопозиционного измерения координат источника лазерного излучения (ИЛИ) (см., например, А.Ю. Козирацкий, Ю.Л. Козирацкий, Р.В. Перевозов. Патент №2269795, Россия, G01S 17/06. Бюл. №4 от 10.02.2006. Способ однопозиционного измерения координат источника лазерного излучения и устройство для его реализации. - М: РОСПАТЕНТ, 2006), основанный на приеме лазерного излучения гетеродинным приемным устройством (ГПУ), осуществлении сканирования поля зрения в заданном секторе обзора за счет изменения положения фазового фронта сигнала гетеродина, определении момента времени достижения полезным сигналом максимального значения. Основным недостатком способа является наличие временного интервала, затрачиваемого на сканирование поля зрения гетеродинным приемником в заданном секторе, что в случае изменения угловых координат ИЛИ за период сканирования приведет к неточности их оценки. Использование сканирующих приводов также снижает точность определения угловых координат ИЛИ и увеличивает время их измерения.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение точности определения направления на ИЛИ.

Технический результат достигается тем, что в известном способе однопозиционного определения угловых координат на ИЛИ, основанном на приеме ИЛИ и смешивании его с опорным излучением, определяют параметры изображения смешиваемых излучений, по значениям параметров смешиваемых излучений измеряют ширину интерференционных полос и угол их наклона, по значениям которых определяют угловые координаты ИЛИ.

Сущность изобретения заключается в применении в качестве фотоприемного устройства матричного фотоприемника (МФП), осуществляющего прием суммарного излучения сигнальной волны и волны гетеродина. В результате суперпозиции сигнальной волны и волны гетеродина на поверхности МФП формируется изображение в виде интерференционных полос. По значениям параметров изображения суммарного поля определяют ширину интерференционных полос и угол их наклона. По значению измеренных характеристик интерференционных полос определяют угловые координаты ИЛИ.

На фиг.1 приведена схема, поясняющая способ (где обозначены: 1 - ГПУ; 2 - сигнальная волна от ИЛИ; 3 - оптическая система; 4 - полупрозрачное зеркало; 5 - гетеродин; 6 - опорная волна гетеродина; 7 - суммарная волна сигнальной и опорной волн; 8 - МФП; 9 - фоточувствительная поверхность МФП, 10 - сигнал с выхода МФП). Оптическая волна от ИЛИ 2 принимается ГПУ 1, через оптическую систему 3 падает на полупрозрачное зеркало 4 и смешивается с опорной волной гетеродина 5. Суммарная волна 7 падает на фоточувствительную поверхность 9 МФП 8, образуя изображение интерференционных полос 9. В результате выходные сигналы 10 МФП 9 будут характеризовать изображения с интерференционными характеристиками суммарной волны 7. По координатам фоточувствительных элементов МФП 8, имеющие максимальные значения выходных сигналов 10, определяют ширину интерференционных полос Δх и их наклон α, по значениям которых определяют угловые координаты ИЛИ.

На фиг.2 приведена схема устройства, реализующего предложенный способ. Устройство состоит из ГПУ 1 (соответствует фигуре 1) и микроконтроллера (МКР) 11.

Устройство функционирует следующим образом. На вход ГПУ 1, содержащего МФП, поступает сигнальная оптическая волна ИЛИ. В ГПУ 1 сигнальная волна смешивается с опорной волной гетеродина, суммарный сигнал МФП преобразуется в изображение, параметры которого поступают в МКР 11, МКР 11 осуществляет цифровую обработку интерференционного изображения, измеряет ширину интерференционных полос и угол их наклона, по их значениям определяют угловые координаты ИЛИ по формулам (1) и (2):

где λ - длина волны излучения, Δх - ширина интерференционных полос, α - угол наклона интерференционных полос, k - коэффициент преобразования, учитывающий характеристики входной оптической системы при формировании изображения ИЛИ на фоточувствительной поверхности МФП, β - угол места ИЛИ, θ - азимут ИЛИ.

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений не известен способ однопозиционного определения угловых координат на ИЛИ, основанный на приеме излучения ИЛИ и смешивании его с опорным излучением, определении параметров изображения смешиваемых излучений, по значениям параметров изображения смешиваемых излучений измерении ширины интерференционных полос и угла их наклона, определении по их значениям угловых координат ИЛИ.

Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы типовые оптические и радиотехнические узлы и устройства. Например, в качестве МФП - оптико-электронный координатор матричного типа, а для цифровой обработки изображений может быть использован микроконтроллер.

Похожие патенты RU2630522C1

название год авторы номер документа
УСТРОЙСТВО ОДНОПОЗИЦИОННОГО ИЗМЕРЕНИЯ НАПРАВЛЕНИЯ НА ОПТИКО-ЭЛЕКТРОННОЕ СРЕДСТВО 2009
  • Кулешов Павел Евгеньевич
  • Козирацкий Александр Юрьевич
  • Козирацкий Юрий Леонтьевич
  • Сербов Денис Анатольевич
  • Гревцев Александр Иванович
RU2444028C2
Способ определения направления на источник лазерного излучения по проекции луча в плоскости наблюдения 2022
  • Дрынкин Дмитрий Анатольевич
  • Козирацкий Александр Юрьевич
  • Петухов Алексей Геннадьевич
  • Смынтына Олег Вадимович
RU2791421C1
СПОСОБ ОДНОПОЗИЦИОННОГО ИЗМЕРЕНИЯ КООРДИНАТ ИСТОЧНИКА ЛАЗЕРНОГО ИЗЛУЧЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2004
  • Козирацкий Юрий Леонтьевич
  • Козирацкий Александр Юрьевич
  • Перевозов Руслан Вячеславович
RU2269795C1
Способ определения угловых координат на источник направленного оптического излучения 2016
  • Гревцев Александр Иванович
  • Капитанов Владимир Валерьевич
  • Козирацкий Александр Юрьевич
  • Козирацкий Юрий Леонтьевич
  • Кулешов Павел Евгеньевич
  • Паринов Максим Леонидович
  • Судариков Геннадий Иванович
  • Фролов Михаил Михайлович
RU2641637C2
СПОСОБ ОДНОПОЗИЦИОННОГО ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКА ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ 2020
  • Кулешов Павел Евгеньевич
  • Попело Владимир Дмитриевич
  • Глушков Александр Николаевич
  • Проскурин Дмитрий Константинович
  • Козирацкий Антон Александрович
RU2755733C1
Способ повышения разрешения изображений, получаемых с помощью матричных фотоприемников 2019
  • Смынтына Олег Вадимович
  • Козирацкий Антон Александрович
RU2724151C1
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ 2018
  • Глушков Александр Николаевич
  • Кулешов Павел Евгеньевич
  • Дробышевский Николай Васильевич
  • Алабовский Андрей Владимирович
RU2706510C1
СПОСОБ ОДНОПОЗИЦИОННОГО ИЗМЕРЕНИЯ КООРДИНАТ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКА ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ 2021
  • Кулешов Павел Евгеньевич
  • Попело Владимир Дмитриевич
  • Кирьянов Владимир Константинович
  • Трепалина Любовь Николаевна
  • Кулешова Инесса Валериевна
RU2784337C1
СПОСОБ НАВЕДЕНИЯ САМОНАВОДЯЩЕГОСЯ БОЕПРИПАСА В УСЛОВИЯХ ЛАЗЕРНОГО ВОЗДЕЙСТВИЯ 2022
  • Кулешов Павел Евгеньевич
  • Попело Владимир Дмитриевич
  • Кулешова Инесса Валериевна
RU2790053C1
СПОСОБ ОБРАЩЕНИЯ ВОЛНОВОГО ФРОНТА КОГЕРЕНТНОГО ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ 2007
  • Дунец Владимир Петрович
  • Гревцев Александр Иванович
  • Козирацкий Александр Юрьевич
  • Козирацкий Юрий Леонтьевич
  • Кулешов Павел Евгеньевич
  • Прохоров Дмитрий Владимирович
RU2383909C2

Иллюстрации к изобретению RU 2 630 522 C1

Реферат патента 2017 года Способ однопозиционного определения угловых координат на источник лазерного излучения

Способ однопозиционного определения угловых координат заключается в применении в качестве фотоприемного устройства матричного фотоприемника, осуществляющего прием суммарного излучения сигнальной волны и волны гетеродина. В результате суперпозиции сигнальной волны и волны гетеродина на поверхности МФП формируется изображение в виде интерференционных полос. По ширине интерференционных полос и угла их наклона определяют угловые координаты источника лазерного излучения. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение точности определения направления на источник лазерного излучения. 2 ил.

Формула изобретения RU 2 630 522 C1

Способ однопозиционного определения угловых координат на источник лазерного излучения, основанный на приеме излучения источника лазерного излучения и смешивании его с опорным излучением, отличающийся тем, что определяют параметры изображения смешиваемых излучений, по значениям параметров изображения смешиваемых излучений измеряют ширину интерференционных полос и угол их наклона, по значениям которых определяют угловые координаты источника лазерного излучения.

Документы, цитированные в отчете о поиске Патент 2017 года RU2630522C1

СПОСОБ ОДНОПОЗИЦИОННОГО ИЗМЕРЕНИЯ КООРДИНАТ ИСТОЧНИКА ЛАЗЕРНОГО ИЗЛУЧЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2004
  • Козирацкий Юрий Леонтьевич
  • Козирацкий Александр Юрьевич
  • Перевозов Руслан Вячеславович
RU2269795C1
ОПТИКО-ЛОКАЦИОННОЕ УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УГЛОВОГО ПОЛОЖЕНИЯ ОБЪЕКТА 1992
  • Живицкий Игорь Викторович
RU2011207C1
US 9073648 B2, 07.07.2015
US 5838432 A1, 17.11.1998.

RU 2 630 522 C1

Авторы

Гревцев Александр Иванович

Капитанов Владимир Валерьевич

Калачев Виктор Владимирович

Козирацкий Александр Юрьевич

Козирацкий Юрий Леонтьевич

Кулешов Павел Евгеньевич

Паринов Максим Леонидович

Судариков Геннадий Иванович

Фролов Михаил Михайлович

Даты

2017-09-11Публикация

2016-05-19Подача