СПОСОБ ОДНОПОЗИЦИОННОГО ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКА ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ Российский патент 2021 года по МПК G01S17/06 G01S3/782 

Описание патента на изобретение RU2755733C1

Изобретение относится к области мониторинга (измерения) местоположений источников оптического излучения (ИОИ) и может быть использовано в системах обеспечения вхождения в связь, системах траекторных измерений, а также в системах координатометрии оптико-электронных средств различного базирования и т.п.

Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ определения местоположения ИОИ по рассеянной в атмосфере составляющей (см., например, [1]), основанный на применении двух оптико-электронных координаторов (ОЭК) с матричными фотоприемниками (МФП), приемные плоскости которых взаимно перпендикулярны, осуществлении координатной привязки фотоэлементов МФП двух ОЭК, приеме рассеянного атмосферным каналом оптического излучения ИОИ двумя ОЭК с МФП, определении крайних фотоэлементов противоположных по периметру линеек фотоэлементов двух ОЭК с МФП, сигнал на выходе которых превысил пороговое значение, и вычислении по значениям координат их местоположения координаты местоположения ИОИ.

Недостатками способа являются: требование к ортогональности взаимного расположения приемных плоскостей ОЭК, которое обуславливает использование большой базы определения местоположения ИОИ; прием рассеянного вбок излучения, ограничивающий дальность обнаружения сигналов ИОИ; определения минимум восьми координат местоположения фоточувствительных элементов ОЭК.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является обеспечение однопозиционного определения координат ИОИ.

Технический результат достигается тем, что в известном способе однопозиционного определения местоположения ИОИ, основанном на применении двух ОЭК с МФП, осуществлении координатной привязки фотоэлементов МФП двух ОЭК, приеме излучения ИОИ двумя ОЭК с МФП, определении координат фотоэлементов ОЭК с МФП, сигналы на выходе которых превысили пороговое значение, располагают ОЭК с МФП на минимальном расстоянии друг от друга, а их приемные плоскости в одной плоскости, вычисляют по значениям координат фотоэлементов ОЭК с МФП, сигналы на выходе которых превысили пороговое значение, параметров оптической системы ОЭК с МФП, параметров взаимного положения центральных фотоэлементов ОЭК с МФП координаты местоположения ИОИ.

Сущность изобретения заключается в применении двух ОЭК с МФП, приемные плоскости которых лежат в одной плоскости на минимальном расстоянии. Каждый фотоэлемент МФП имеет координатную привязку. Определение координат местоположения ИОИ осуществляется по значениям координат фотоэлементов МФП, сигналы на выходе которых превысили пороговое значение, параметров оптической системы ОЭК с МФП и параметров взаимного положения центральных фотоэлементов ОЭК с МФП.

На фигуре 1 представлена схема, поясняющая способ, где: 1 - два ОЭК, включающих 2 - оптическую систему и 3 - МФП; 4 - ИОИ ( - координаты фотоэлементов МФП 3 ОЭК 1, сигналы на выходе которых превысили пороговое значение, - координаты центральных фотоэлементов МФП 3 ОЭК 1, - фокусное расстояние оптической системы 2, - координаты местоположения ИОИ 4). Для упрощения описания функционирования способа ОЭК 1 представлен в виде эквивалентной оптической системы 2 с фокусным расстоянием и МФП 3. Оптическая система ОЭК 1 любой сложности, состоящий из последовательно расположенных линейных элементов, может быть представлена эквивалентной системой, обеспечивающей при заданных параметрах излучения на входе такие же параметры излучения на выходе, что и реальная система (см., например, [2], стр. 26-28).

Фоточувствительные элементы МФП 3 ОЭК 1 имеют координатную привязку. Приемные плоскости ОЭК 1 лежат в одной плоскости. МФП 3 через объектив 2 принимают излучение ИОИ 4. МФП 3 ОЭК 1 определяют координаты фотоэлементов, сигналы на выходе которых превысили пороговое значение (на фигуре 1 фотоэлементы обозначены черным цветом). Вычисляют по значениям координат фотоэлементов МФП 3, фокусного расстояния оптической системы 2, координат взаимного положения центральных фотоэлементов МФП 3 координаты местоположения ИОИ 4.

Для подтверждения технического результата приведем основные аналитические зависимости применительно к координатной привязке, изображенной на фигуре 1. Координаты ИОИ 4 определяются как

При этом расстояние между ОЭК 1 минимально, что обеспечивает их размещение в одном корпусе.

На фигуре 2 представлена блок-схема устройства, с помощью которого может быть реализован предлагаемый способ. Блок-схема устройства включает: технологический корпус 5, в котором установлены два ОЭК 1, навигационный приемник 6, блок обработки и управления 7.

Устройство работает следующим образом. Навигационный приемник 6 определяет координаты местоположения и передает их значения в блок обработки и управления 7. Блок обработки и управления 7 осуществляет координатную привязку МФП ОЭК 1. ОЭК 1 определяют координаты фотоэлементов, сигналы на выходе которых превысили пороговое значение, и передают их значения в блок обработки и управления 7, который определяет по поступившим данным и хранящемся данным координаты местоположения ИОИ.

Таким образом, предлагаемый способ позволяет обеспечить однопозиционное определения координат ИОИ за счет использования двух ОЭК на минимальном расстоянии друг от друга, приемные плоскости которых расположены в одной плоскости. Следовательно, предлагаемый авторами, способ устраняет недостатки прототипа.

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен способ однопозиционного определения местоположения ИОИ, основанный на применении двух ОЭК с МФП, осуществлении координатной привязки фотоэлементов МФП двух ОЭК, приеме излучения ИОИ двумя ОЭК с МФП, определении координат фотоэлементов ОЭК с МФП, сигналы на выходе которых превысили пороговое значение, расположении ОЭК с МФП на минимальном расстоянии друг от друга и их приемных плоскостей в одной плоскости, вычислении по значениям координат фотоэлементов ОЭК с МФП, сигналы на выходе которых превысили пороговое значение, параметров оптической системы ОЭК с МФП, параметров взаимного положения центральных фотоэлементов ОЭК с МФП координат местоположения ИОИ.

Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы типовые радиоэлектронные узлы и устройства.

1. Пат. 2591589 RU, G01S 17/06. Способ определения местоположения источника оптического излучения по рассеянной в атмосфере составляющей / Ю.Л. Козирацкий, А.Ю. Козирацкий, И.Е. Грохотов, П.Е. Кулешов и др.; заявитель и патентообладатель ВУНЦ ВВС «ВВА им. проф. Н.Е. Жуковского и Ю.А. Гагарина». - №2014154444; заявл. 30.12.2014; опубл. 20.07.2016, Бюл. №20. - 9 с.

2. Козирацкий Ю.Л., Афанасьева А.И., Гревцев А.И., Донцов А.А. и др. Обнаружение и координатометрия оптико-электронных средств, оценка параметров их сигналов. / Ю.Л. Козирацкий, А.И. Афанасьева, А.И. Гревцев, А.А. Донцов и др. М.: «ЗАО «Издательство «Радиотехника», 2015. 456 с.

Похожие патенты RU2755733C1

название год авторы номер документа
СПОСОБ ОДНОПОЗИЦИОННОГО ИЗМЕРЕНИЯ КООРДИНАТ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКА ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ 2021
  • Кулешов Павел Евгеньевич
  • Попело Владимир Дмитриевич
  • Кирьянов Владимир Константинович
  • Трепалина Любовь Николаевна
  • Кулешова Инесса Валериевна
RU2784337C1
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКА ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ ПО РАССЕЯННОЙ В АТМОСФЕРЕ СОСТАВЛЯЮЩЕЙ 2014
  • Козирацкий Юрий Леонтьевич
  • Козирацкий Александр Юрьевич
  • Грохотов Евгений Игоревич
  • Кулешов Павел Евгеньевич
  • Кусакин Алексей Викторович
  • Левшин Евгений Анатольевич
  • Меркулов Руслан Евгеньевич
RU2591589C1
Способ определения угловых координат на источник направленного оптического излучения 2016
  • Гревцев Александр Иванович
  • Капитанов Владимир Валерьевич
  • Козирацкий Александр Юрьевич
  • Козирацкий Юрий Леонтьевич
  • Кулешов Павел Евгеньевич
  • Паринов Максим Леонидович
  • Судариков Геннадий Иванович
  • Фролов Михаил Михайлович
RU2641637C2
СПОСОБ НАВЕДЕНИЯ САМОНАВОДЯЩЕГОСЯ БОЕПРИПАСА В УСЛОВИЯХ ЛАЗЕРНОГО ВОЗДЕЙСТВИЯ 2022
  • Кулешов Павел Евгеньевич
  • Попело Владимир Дмитриевич
  • Кулешова Инесса Валериевна
RU2790053C1
Способ определения направления на источник лазерного излучения по проекции луча в плоскости наблюдения 2022
  • Дрынкин Дмитрий Анатольевич
  • Козирацкий Александр Юрьевич
  • Петухов Алексей Геннадьевич
  • Смынтына Олег Вадимович
RU2791421C1
СПОСОБ НАВЕДЕНИЯ САМОНАВОДЯЩЕГОСЯ ЭЛЕМЕНТА В УСЛОВИЯХ ЛАЗЕРНОГО ВОЗДЕЙСТВИЯ 2023
  • Кулешов Павел Евгеньевич
RU2816482C1
УСТРОЙСТВО ОПРЕДЕЛЕНИЯ УГЛОВЫХ КООРДИНАТ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ 2009
  • Козирацкий Александр Юрьевич
  • Козирацкий Юрий Леонтьевич
  • Кулешов Павел Евгеньевич
  • Кусакин Олег Викторович
RU2439615C2
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ НА ИСТОЧНИК ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ ПО РАССЕЯННОЙ В АТМОСФЕРЕ СОСТАВЛЯЮЩЕЙ 2016
  • Гурбо Александр Владимирович
  • Журавлев Сергей Викторович
  • Попов Анатолий Васильевич
  • Филиппских Евгений Эдуардович
  • Яковченко Андрей Владимирович
RU2657308C2
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЙ НА ИСТОЧНИКИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ ПО РАССЕЯННОЙ В АТМОСФЕРЕ СОСТАВЛЯЮЩЕЙ 2007
  • Гревцев Алексей Игоревич
  • Козирацкий Александр Юрьевич
  • Козирацкий Юрий Леонтьевич
  • Кулешов Павел Евгеньевич
  • Кусакин Алексей Викторович
  • Кущев Сергей Сергеевич
  • Паринов Максим Леонидович
  • Прохоров Дмитрий Владимирович
  • Хаджиева Яха Яхъяевна
  • Хакимов Наиль Тимерканович
RU2357272C2
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ НА ИСТОЧНИК ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ ПОДВИЖНЫМИ СРЕДСТВАМИ 2012
  • Кулешов Павел Евгеньевич
  • Козирацкий Юрий Леонтьевич
  • Кильдюшевский Владиммир Михайлович
  • Аль Рахья Ахмад
RU2516441C2

Иллюстрации к изобретению RU 2 755 733 C1

Реферат патента 2021 года СПОСОБ ОДНОПОЗИЦИОННОГО ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКА ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ

Изобретение относится к области определения местоположений источников оптического излучения и касается способа однопозиционного определения местоположения источника оптического излучения. Способ включает в себя координатную привязку фотоэлементов матричных фотоприемников двух оптико-электронных координаторов, прием излучения источника оптического излучения двумя оптико-электронными координаторами и определение координат фотоэлементов, сигналы на выходе которых превысили пороговое значение. Оптико-электронные координаторы с матричными фотоприемниками располагают на минимальном расстоянии друг от друга так, что их приемные плоскости находятся в одной плоскости. Координаты местоположения источника оптического излучения вычисляют по значениям координат фотоэлементов, сигналы на выходе которых превысили пороговое значение, значениям параметров оптической системы оптико-электронных координаторов и по параметрам взаимного положения центральных фотоэлементов оптико-электронных координаторов. Технический результат заключается в обеспечении возможности однопозиционного определения местоположения источника оптического излучения, упрощении способа и увеличении дальности обнаружения сигналов. 2 ил.

Формула изобретения RU 2 755 733 C1

Способ однопозиционного определения местоположения источника оптического излучения, основанный на применении двух оптико-электронных координаторов с матричными фотоприемниками, осуществлении координатной привязки фотоэлементов матричных фотоприемников двух оптико-электронных координаторов, приеме излучения источника оптического излучения двумя оптико-электронными координаторами с матричными фотоприемниками, определении координат фотоэлементов оптико-электронных координаторов с матричными фотоприемниками, сигналы на выходе которых превысили пороговое значение, отличающейся тем, что располагают оптико-электронные координаторы с матричными фотоприемниками на минимальном расстоянии друг от друга, а их приемные плоскости в одной плоскости, вычисляют по значениям координат фотоэлементов оптико-электронных координаторов с матричными фотоприемниками, сигналы на выходе которых превысили пороговое значение, параметров оптической системы оптико-электронных координаторов с матричными фотоприемниками, параметров взаимного положения центральных фотоэлементов оптико-электронных координаторов с матричными фотоприемниками координаты местоположения источника оптического излучения.

Документы, цитированные в отчете о поиске Патент 2021 года RU2755733C1

СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКА ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ ПО РАССЕЯННОЙ В АТМОСФЕРЕ СОСТАВЛЯЮЩЕЙ 2014
  • Козирацкий Юрий Леонтьевич
  • Козирацкий Александр Юрьевич
  • Грохотов Евгений Игоревич
  • Кулешов Павел Евгеньевич
  • Кусакин Алексей Викторович
  • Левшин Евгений Анатольевич
  • Меркулов Руслан Евгеньевич
RU2591589C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДАЛЬНОСТЕЙ ДО ОБЪЕКТОВ ПО ИЗОБРАЖЕНИЯМ С ЦИФРОВЫХ ВИДЕОКАМЕР 2016
  • Зубарь Алексей Владимирович
  • Кайков Кирилл Владимирович
  • Пивоваров Владимир Петрович
  • Алферов Станислав Владимирович
  • Гейнце Эдуард Александрович
  • Поздеев Андрей Николаевич
  • Афанасьев Александр Алексеевич
RU2626051C2
US 2020183006 A1, 11.06.2020
US 9164625 B2, 20.10.2015.

RU 2 755 733 C1

Авторы

Кулешов Павел Евгеньевич

Попело Владимир Дмитриевич

Глушков Александр Николаевич

Проскурин Дмитрий Константинович

Козирацкий Антон Александрович

Даты

2021-09-20Публикация

2020-11-26Подача