Способ формирования сигнала управления боковым движением нестационарного беспилотного летательного аппарата с адаптивно-функциональной коррекцией и устройство для его осуществления Российский патент 2017 года по МПК G05D1/00 B64C13/02 

Описание патента на изобретение RU2631736C1

Изобретение относится к устройствам многофакторного управления для бортовых систем автоматического управления беспилотными летательными аппаратами, в частности и в особенности при ограниченном до минимума числа рулей - до двух.

Известны способы формирования сигнала и устройства управления для систем управления боковым движением беспилотного летательного аппарата (БЛА), в которых каналы управления креном и курсом содержат элементы вычитания и суммирующие усилители, формирующие по задающим воздействиям и сигналам датчиков состояния управляющие воздействия на исполнительные приводы летательного аппарата [1].

Недостатком такой реализации являются ограниченность возможностей управления и невысокая статическая и динамическая точность.

Наиболее близким к предлагаемому изобретению – прототипом - является способ и устройство управления летательным аппаратом [2].

Известный способ включает в себя задание угла курса, измерение текущего значения сигнала угла курса, формирование сигнала рассогласования по курсу посредством вычитания из текущего значения сигнала угла курса заданного значения, ограничение сигнала управляющего воздействия по крену, измерение текущего значения сигнала угла крена, формирование сигнала рассогласования по крену посредством вычитания из текущего значения сигнала угла крена ограниченного сигнала управляющего воздействия по крену, измерение сигнала угловой скорости по курсу, измерение сигнала угловой скорости по крену, формирование выходного сигнала управления устройства посредством ограничения базового сигнала управления по крену.

Известное устройство содержит последовательно соединенные задатчик угла курса и первый блок вычитания, второй вход которого соединен с выходом датчика угла курса, последовательно соединенные первый ограничитель сигнала и второй блок вычитания, второй вход которого соединен с выходом датчика угла крена, датчик угловой скорости по курсу, датчик угловой скорости по крену и второй ограничитель сигнала, выход которого является выходом устройства управления.

Недостатками известных способа и устройства являются ограниченные функциональные возможности в условиях широкого высотно-скоростного диапазона траекторий полета и невысокая статическая и динамическая точность управления.

Техническим результатом предложенного решения являются расширение функциональных возможностей при полете в широком высотно-скоростном диапазоне траекторий, повышение статической и динамической точности, а также увеличение интенсивности управления с точки зрения маневренности ЛА.

Указанный технический результат достигается тем, что в известный способ, включающий в себя задание угла курса, измерение сигнала угла курса, формирование сигнала рассогласования по курсу посредством вычитания из сигнала угла курса заданного значения, ограничение сигнала управляющего воздействия по крену, измерение сигнала угла крена, формирование сигнала рассогласования по крену посредством вычитания из сигнала угла крена ограниченного сигнала координированного управляющего воздействия по крену, измерение сигнала угловой скорости по курсу, измерение сигнала угловой скорости по крену, формирование выходного сигнала управления устройства посредством ограничения базового сигнала управления по крену, дополнительно включены измерение сигнала скоростного напора адаптивное, в функции от сигнала скоростного напора, усиление сигналов рассогласования по курсу и угловой скорости по курсу и суммирование полученных сигналов, адаптивное, в функции от скоростного напора, инвертирующее корректирующее усиление сигнала рассогласования по курсу, адаптивное, в функции от скоростного напора, инвертирующее масштабирование суммарного сигнала, формирование задающего значения координирующего сигнала управления по крену посредством адаптивного, в функции от скоростного напора, ограничения инвертированного масштабированного сигнала, формирование корректирующей компоненты по крену посредством ограничения адаптивно скорректированного инвертированного с усилением сигнала рассогласования по крену, адаптивное, в функции от сигнала скоростного напора, формирование базового сигнала управления по крену адаптивным усилением сигналов рассогласования по крену и угловой скорости по крену и суммированием усиленных сигналов.

Указанный технический результат достигается также и тем, что в известное устройство, содержащее последовательно соединенные задатчик угла курса и первый блок вычитания, второй вход которого соединен с выходом датчика угла курса, последовательно соединенные первый ограничитель сигнала и второй блок вычитания, второй вход которого соединен с выходом датчика угла крена, датчик угловой скорости по курсу, датчик угловой скорости по крену и второй ограничитель сигнала, выход которого является выходом устройства, дополнительно введены последовательно соединенные датчик скоростного напора и первый адаптивный суммирующий усилитель, второй вход которого соединен с выходом первого блока вычитания, последовательно соединенные адаптивный корректирующий инвертирующий усилитель, первый вход которого соединен с выходом первого блока вычитания, второй - с выходом датчика скоростного напора, адаптивный ограничитель сигнала, второй вход которого соединен с выходом датчика скоростного напора, и второй адаптивный суммирующий усилитель, второй вход которого соединен с выходом датчика скоростного напора, третий вход - с выходом второго блока вычитания, четвертый - с выходом датчика угловой скорости по крену, а выход соединен со входом второго ограничителя сигнала, и инвертирующий масштабный усилитель, вход которого соединен выходом первого адаптивного суммирующего усилителя, а выход соединен со входом первого ограничителя сигнала.

Действительно, при этом обеспечивается отработка угла курса посредством маневров БЛА по крену с участием и функциональной избирательностью и с доопределением основных режимов режимами форсирующего сигнала, адаптации и функциональных ограничений сигналов при многофакторных условиях полета.

На чертеже представлена блок схема устройства формирования сигнала управления боковым движением БЛА с адаптивно-функциональной коррекцией.

Устройство управления БЛА с реализацией способа содержит последовательно соединенные задатчик угла курса 1 (ЗУКур) и первый блок вычитания 2 (1БВ), второй вход которого соединен с выходом датчика угла курса 3 (ДУКур), последовательно соединенные первый ограничитель сигнала 4 (1OС) и второй блок вычитания 5 (2БВ), второй вход которого соединен с выходом датчика угла крена 6 (ДУКр), датчик угловой скорости по курсу 7 (ДУСКур), датчик угловой скорости по крену 8 (ДУСКр) и второй ограничитель сигнала 9 (2OС), выход которого является выходом устройства, последовательно соединенные датчик скоростного напора 10 (ДСН) и первый адаптивный суммирующий усилитель 11 (1АСУ), второй вход которого соединен с выходом первого блока вычитания 2, последовательно соединенные адаптивный корректирующий инвертирующий усилитель 12 (АКИУ), первый вход которого соединен с выходом первого блока вычитания 2, второй - с выходом датчика скоростного напора 10, адаптивный ограничитель сигнала 13(АОС), второй вход которого соединен с выходом датчика скоростного напора 10, и второй адаптивный суммирующий усилитель 14 (2АСУ), второй вход которого соединен с выходом датчика скоростного напора, третий вход - с выходом второго блока вычитания 5, четвертый - с выходом датчика угловой скорости по крену 8, а выход соединен со входом второго ограничителя сигнала 9, и инвертирующий масштабный усилитель 15 (ИМУ), вход которого соединен выходом первого адаптивного суммирующего усилителя 11, а выход соединен со входом первого ограничителя сигнала 4.

Устройство управления с реализацией Способа работает следующим образом.

Блоки 1, 2, 3, 7, 11 со связями образуют основной канал управления по курсу; блоки 4, 5, 6, 8, 14, 9 со связями образуют основной канал управления по крену; блок 15 со связями - канал перекрестной координирующей связи; блоки 12, 13, 14 со связями формируют дополнительную, форсирующую компоненту сигнала управления для канала крена; датчик скоростного напора 10 со связями формирует каналы и режимы адаптации; блоки 4, 9, 13 осуществляют ограничение сигналов.

В целом, канал управления с формированием выходного сигнала устройства включает в себя соединенные каналы курса, крена и перекрестную координирующую связь. Сигналы формируются блоками 4, 5, 6, 7, 11 канала курса, 1, 2, 3, 8, 9, 10 канала крена:

где K, К - адаптивные передаточные коэффициенты первого усилителя 11, адаптивно перестраиваемые в функции от сигнала скоростного напора q, получаемого от датчика скоростного напора 10;

Δψ - сигнал рассогласования по курсу на выходе первого блока вычитания 2;

ψ - сигнал датчика угла курса 3;

ψзад - задающий сигнал по курсу на выходе задатчика сигнала управления по курсу 1;

ωу- сигнал датчика угловой скорости по курсу 7;

K, К - адаптивные передаточные коэффициенты второго усилителя 14;

Δγ - сигнал рассогласования по крену на выходе второго блока вычитания 5;

γ - сигнал датчика угла крена 6;

γупр - управляющий сигнал по крену на выходе звена с ограничением 4;

ωх - сигнал датчика угловой скорости по крену 8.

Сигнал γупр формируется специальным каналом координированного управления, подключенным входом по сигналу σψ к выходу второго суммирующего усилителя 11, а выходом - ко входу ограничителя 4 через инвертирующий масштабный усилитель 15.

Устройство управления работает в режимах стабилизации и управления задающих сигналов ψзад через основной канал, сочетающий соединенные каналы курса и крена, и дополнительный (второй) корректирующий канал, формирующий дополнительную компоненту Δσγ в непосредственной функции от сигнала Δψ.

Для этого в основной сигнал управления по крену по (2) добавляется компонента Δσγ, т.е.

При отработке сигналов ψзад канал курса формирует сигнал σψ, канал крена - в режиме координированного управления с отработкой сигнала γупр с ограничением сигнала σγ в блоке 9, сигнал с выхода которого является выходным сигналом устройства. Инвертирование в усилителях 15 и 12 реализует принцип координированного управления и оптимальное значение степени усиления. Ограничитель сигнала 9 обеспечивает выполнение функции ограничения координированного сигнала управления для подачи на рулевой привод летательного аппарата.

Все блоки устройства управления являются стандартными и могут быть реализованы на элементах автоматики и вычислительной техники, например, по [3, 4].

Таким образом, предложенное техническое решение позволяет расширить функциональные возможности устройства в условиях изменения задающих воздействий в широких пределах, существенно расширить высотно-скоростной диапазон траекторий полета БЛА и повысить статическую и динамическую точность управления.

Источники информации

1. И.А. Михалев и др. Системы автоматического управления самолетом. - М.: Машиностроение, 1987 г., с. 174.

2. Патент РФ №2532720 от 10.09.2014 г.

3. В.Б. Смолов. Функциональные преобразователи информации. - Л.: Энергоиздат, Ленинградское отделение, 1981, с. 22, 41.

4. А.У. Ялышев, О.И. Разоренов. Многофункциональные аналоговые регулирующие устройства автоматики. - М.: Машиностроение, 1981, с. 107, 126.

Похожие патенты RU2631736C1

название год авторы номер документа
АДАПТИВНОЕ УСТРОЙСТВО КООРДИНИРОВАННОГО УПРАВЛЕНИЯ ЛЕТАТЕЛЬНЫМ АППАРАТОМ 2008
  • Сыров Антолий Сергеевич
  • Пучков Александр Михайлович
  • Скабицкий Владимир Иванович
  • Карева Елена Михайловна
RU2367993C1
МОДЕРНИЗИРОВАННОЕ АДАПТИВНОЕ УСТРОЙСТВО КООРДИНИРОВАННОГО УПРАВЛЕНИЯ ЛЕТАТЕЛЬНЫМ АППАРАТОМ 2014
  • Пучков Александр Михайлович
  • Селезнев Антон Евгеньевич
  • Хлопкин Артем Владимирович
  • Соловьев Алексей Сергеевич
RU2554515C1
СПОСОБ ФОРМИРОВАНИЯ СИГНАЛА УПРАВЛЕНИЯ БОКОВЫМ ДВИЖЕНИЕМ ЛЕТАТЕЛЬНОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Абадеев Эдуард Матвеевич
  • Ежов Владимир Васильевич
  • Кравчук Сергей Валентинович
  • Ляпунов Владимир Викторович
  • Макаров Николай Валентинович
  • Пучков Александр Михайлович
  • Сыров Анатолий Сергеевич
  • Трусов Владимир Николаевич
RU2339990C1
АДАПТИВНОЕ УСТРОЙСТВО ФОРМИРОВАНИЯ СИГНАЛА УПРАВЛЕНИЯ ПРОДОЛЬНО-БАЛАНСИРОВОЧНЫМ ДВИЖЕНИЕМ ЛЕТАТЕЛЬНОГО АППАРАТА 2009
  • Сыров Анатолий Сергеевич
  • Ежов Владимир Васильевич
  • Кравчук Сергей Валентинович
  • Пучков Александр Михайлович
RU2394263C1
ДВУХКАНАЛЬНОЕ УСТРОЙСТВО КООРДИНИРОВАННОГО УПРАВЛЕНИЯ ЛЕТАТЕЛЬНЫМ АППАРАТОМ 2013
  • Сыров Анатолий Сергеевич
  • Пучков Александр Михайлович
RU2532720C1
СПОСОБ ФОРМИРОВАНИЯ ИНТЕГРАЛЬНОГО АДАПТИВНОГО СИГНАЛА СТАБИЛИЗАЦИИ ПЛАНИРУЮЩЕГО ДВИЖЕНИЯ БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Сыров Анатолий Сергеевич
  • Пучков Александр Михайлович
  • Попов Борис Николаевич
  • Огольцов Игорь Иванович
  • Жданович Надежда Павловна
  • Черепанова Валентина Евгеньевна
RU2460113C1
Модернизированная бортовая адаптивная система стабилизации бокового движения летательного аппарата 2015
  • Кравчук Сергей Валентинович
  • Пучков Александр Михайлович
  • Романов Олег Дмитриевич
  • Селезнев Антон Евгеньевич
  • Соловьев Алексей Сергеевич
  • Жданович Надежда Павловна
  • Чернышов Юрий Александрович
RU2611459C1
СПОСОБ ФОРМИРОВАНИЯ ЦИФРОАНАЛОГОВОГО АДАПТИВНОГО СИГНАЛА СТАБИЛИЗАЦИИ УГЛОВОГО ПОЛОЖЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА ПО КУРСУ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Сыров Анатолий Сергеевич
  • Жданович Надежда Павловна
  • Ласунин Илья Владимирович
  • Никифоров Павел Николаевич
  • Пучков Александр Михайлович
  • Тарасов Владимир Ильич
  • Фирсов Сергей Александрович
RU2491600C1
СПОСОБ ФОРМИРОВАНИЯ ЦИФРОАНАЛОГОВОГО СИГНАЛА УГЛОВОЙ СТАБИЛИЗАЦИИ НЕСТАЦИОНАРНОГО ОБЪЕКТА УПРАВЛЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2017
  • Сыров Анатолий Сергеевич
  • Жданович Надежда Павловна
  • Кравчук Сергей Валентинович
  • Пучков Александр Михайлович
  • Соловьев Алексей Сергеевич
  • Чернышов Юрий Александрович
RU2653409C1
МНОГОРЕЖИМНОЕ ЦИФРОАНАЛОГОВОЕ УСТРОЙСТВО УПРАВЛЕНИЯ УГЛОВЫМ ДВИЖЕНИЕМ ПО ТАНГАЖУ БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА 2014
  • Пучков Александр Михайлович
  • Селезнев Антон Евгеньевич
  • Соловьев Алексей Сергеевич
  • Хлопкин Артем Владимирович
RU2541903C1

Иллюстрации к изобретению RU 2 631 736 C1

Реферат патента 2017 года Способ формирования сигнала управления боковым движением нестационарного беспилотного летательного аппарата с адаптивно-функциональной коррекцией и устройство для его осуществления

Группа изобретений относится к способу и устройству формирования сигнала управления боковым движением нестационарного беспилотного летательного аппарата с адаптивно-функциональной коррекцией. Для формирования сигнала управления задают угол курса, измеряют сигнал угла курса, формируют сигнал рассогласования по курсу, ограничивают сигнал управляющего воздействия по крену, измеряют сигналы угловой скорости по крену, курсу и скоростного напора, усиливают сигнал рассогласования по курсу и угловой скорости по курсу, суммируют полученные сигналы, инвертируют корректирующее усиление сигнала рассогласования по курсу, инвертируют масштабирование суммарного сигнала, формируют задающее значение координирующего сигнала управления по крену, формируют корректирующую компоненту по крену, формируют базовый сигнал управления по крену определенным образом, формируют выходной сигнал управления, ограниченный определенным образом. Устройство содержит задатчик угла курса, два блока вычитания, датчик угла курса, два ограничителя сигнала, датчик угла крена, датчик угловой скорости по курсу, датчик угловой скорости по крену, датчик скоростного напора, два адаптивных суммирующих усилителя, адаптивный корректирующий инвертирующий усилитель, адаптивный ограничитель сигнала, адаптивный инвертирующий масштабный усилитель, соединенные определенным образом. Обеспечивается расширение функциональных возможностей при полете в широком высотно-скоростном диапазоне траекторий. 2 н.п. ф-лы, 1 ил.

Формула изобретения RU 2 631 736 C1

1. Способ формирования сигнала управления боковым движением нестационарного беспилотного летательного аппарата с адаптивно-функциональной коррекцией, включающий в себя задание угла курса, измерение сигнала угла курса, формирование сигнала рассогласования по курсу посредством вычитания из сигнала курса заданного значения, ограничение сигнала управляющего воздействия по крену, измерение сигнала угла крена, формирование сигнала рассогласования по крену посредством вычитания из сигнала угла крена ограниченного сигнала координированного управляющего воздействия по крену, измерение сигнала угловой скорости по курсу, измерение сигнала угловой скорости по крену, формирование выходного сигнала управления устройства посредством ограничения базового сигнала управления по крену, отличающийся тем, что дополнительно включены измерение сигнала скоростного напора, усиление сигналов рассогласования по курсу и угловой скорости по курсу и суммирование полученных сигналов, инвертирующее корректирующее усиление сигнала рассогласования по курсу, инвертирующее масштабирование суммарного сигнала, формирование задающего значения координирующего сигнала управления по крену посредством адаптивного, в функции от скоростного напора, ограничения инвертированного масштабированного сигнала, формирование корректирующей компоненты по крену посредством ограничения адаптивно скорректированного инвертированного с усилением сигнала рассогласования по крену, формирование базового сигнала управления по крену адаптивным усилением сигналов рассогласования по крену и угловой скорости по крену и суммированием усиленных сигналов.

2. Устройство для осуществления способа по п. 1, содержащее последовательно соединенные задатчик угла курса и первый блок вычитания, второй вход которого соединен с выходом датчика угла курса, последовательно соединенные первый ограничитель сигнала и второй блок вычитания, второй вход которого соединен с выходом датчика угла крена, датчик угловой скорости по курсу, датчик угловой скорости по крену и второй ограничитель сигнала, выход которого является выходом устройства, отличающееся тем, что дополнительно содержит последовательно соединенные датчик скоростного напора и первый адаптивный суммирующий усилитель, второй вход которого соединен с выходом первого блока вычитания, последовательно соединенные адаптивный корректирующий инвертирующий усилитель, первый вход которого соединен с выходом первого блока вычитания, второй - с выходом датчика скоростного напора, адаптивный ограничитель сигнала, второй вход которого соединен с выходом датчика скоростного напора, и второй адаптивный суммирующий усилитель, второй вход которого соединен с выходом датчика скоростного напора, третий вход - с выходом второго блока вычитания, четвертый - с выходом датчика угловой скорости по крену, а выход соединен со входом второго ограничителя сигнала, и адаптивный инвертирующий масштабный усилитель, вход которого соединен выходом первого адаптивного суммирующего усилителя, а выход соединен со входом первого ограничителя сигнала.

Документы, цитированные в отчете о поиске Патент 2017 года RU2631736C1

МОДЕРНИЗИРОВАННОЕ АДАПТИВНОЕ УСТРОЙСТВО КООРДИНИРОВАННОГО УПРАВЛЕНИЯ ЛЕТАТЕЛЬНЫМ АППАРАТОМ 2014
  • Пучков Александр Михайлович
  • Селезнев Антон Евгеньевич
  • Хлопкин Артем Владимирович
  • Соловьев Алексей Сергеевич
RU2554515C1
СПОСОБ ФОРМИРОВАНИЯ ЦИФРОАНАЛОГОВОГО АДАПТИВНОГО СИГНАЛА УПРАВЛЕНИЯ ЛЕТАТЕЛЬНЫМ АППАРАТОМ С ПЕРЕМЕННОЙ СТРУКТУРОЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Сыров Анатолий Сергеевич
  • Гладыш Анатолий Николаевич
  • Жданович Надежда Павловна
  • Казаков Игорь Дмитриевич
  • Петров Андрей Борисович
  • Пучков Александр Михайлович
  • Черепанова Валентина Евгеньевна
RU2491601C1
СПОСОБ УПРАВЛЕНИЯ САМОЛЕТОМ 2003
  • Крюков С.П.
  • Казаков В.В.
  • Голованов Н.А.
  • Кузнецов А.Г.
  • Калик А.А.
  • Демченко О.Ф.
  • Попович К.Ф.
  • Школин В.П.
  • Митриченко А.Н.
  • Кодола В.Г.
RU2235042C1
US 7908043 B2, 15.03.2011
US 8442701 B2, 14.05.2013.

RU 2 631 736 C1

Авторы

Сыров Анатолий Сергеевич

Пучков Александр Михайлович

Жданович Надежда Павловна

Соловьев Алексей Сергеевич

Селезнев Антон Евгеньевич

Романов Олег Дмитриевич

Хлопкин Артем Владимирович

Даты

2017-09-26Публикация

2016-09-16Подача