Способ обработки термовидеоинформации и решающее устройство для определения температуры объекта при осуществлении способа Российский патент 2017 года по МПК G01J5/32 H04N5/33 

Описание патента на изобретение RU2633645C1

Изобретение относится к области тепловизионной техники, а именно к способам обработки и отображения измеренной яркостной температуры объекта.

Любой объект излучает электромагнитные волны в инфракрасном (ИК), видимом (ВД) и ультрафиолетовом (УФ) диапазонах частот. Интенсивность теплового излучения напрямую зависит от температуры объекта и лишь в очень малой степени зависит от условий освещенности в видимом диапазоне. Таким образом, при помощи тепловизионного прибора о любом наблюдаемом объекте может быть собрана и визуализирована дополнительная информация, недоступная человеческому глазу и приборам. Это открывает ряд уникальных возможностей для различных сфер деятельности, в том числе для контроля технологических процессов, например обеспечения безопасности объектов, таких как космические аппараты и ракеты-носители, имеющих термонагруженные элементы (ракетные двигатели, насосы подачи топлива и окислителя, либо элементы ядерного реактора).

Принцип действия современных тепловизоров основан на способности материалов фиксировать излучение в различных диапазонах длин волн. Посредством оптического прибора, в состав которого входят линзы, изготовленные с применением материалов, прозрачных для определенного типа излучения (таких как германий), тепловое излучение объектов проецируется на матрицу датчиков, информация с этих датчиков считывается и генерируется видеосигнал, где разной температуре наблюдаемого объекта соответствует разный цвет изображения. Шкала соответствия цвета точки на изображении к абсолютной температуре наблюдаемого объекта может быть выведена поверх кадра. Также возможно указание температур наиболее горячей и наиболее холодной точки на изображении. Многие тепловизионные приборы также оснащены устройствами памяти для записи полученного видеоизображения картины теплового излучения, производительными микропроцессорами, позволяющими осуществлять в режиме реального времени минимальную аналитику полученного в результате сканирования изображения источника излучения.

Известно совместное использование тепловизора и видеокамеры, что позволяет в общем случае получить изображение объекта в «расширенном» диапазоне объединенных ИК и видимого спектров, а в неблагоприятных условиях, например при отсутствии освещения объекта, наблюдать объект хотя бы в одном из диапазонов. Например, ИК или видимый диапазон могут как накладываться друг на друга, так и транслироваться отдельно. Примером такой конфигурации может являться тепловизионная система TI3000 компании ULIRVISION (КНР) (www.ulirvision.com).

Также, из уровня техники известен способ визуального спектрального анализа телевизионного изображения дальнего ИК-спектра (патент на изобретение RU 2233559), который может быть принят в качестве прототипа. В RU 2233559 используют транспонирование ИК-изображения объекта в видимый диапазон спектра. Привычные объекты (например, лицо человека, снег, трава и т.д.) передаются привычными цветами (телесный, белый, зеленый и т.д.), что обеспечивает оценку и анализ спектральных и яркостных характеристик объектов оператором по их телевизионным изображениям в дальнем ИК-диапазоне. В результате, обеспечивается психологически привычное восприятие телевизионного изображения объектов. Недостатком данного метода является достаточно узкий диапазон частот регистрируемых сигналов, что ограничивает возможности оператора по анализу изображения и принятию решения в нештатной ситуации. Также, невозможно осуществлять зонный анализ температур в автоматизированном режиме.

В свою очередь предлагаемая группа изобретений позволит учесть существующие технические проблемы, перечисленные выше, и, в итоге, повысить достоверность контроля температуры термонагруженных узлов космических аппаратов и ракет-носителей.

Способ обработки термовидеоинформации предусматривает видеозапись теплового излучения исследуемого объекта и транспонирование полученного видеоизображения в видимый диапазон, генерацию видеосигнала, где разной температуре наблюдаемого объекта соответствует разный цвет изображения с последующим анализом оператором полученного изображения. В предложенном способе видеозапись теплового излучения осуществляется на борту, по преимуществу на борту космического аппарата, одновременно двумя камерами инфракрасного и ультрафиолетового диапазона посредством приборов с зарядовой связью (ПЗС) и объективов двух типов. Первый из двух типов приборов - ПЗС с «виртуальной» фазой (ВФПЗС) и объектив для диапазона длин волн 0,3…1,0 мкм, например объектив из кварцевого стекла, а второй - инфракрасный ПЗС (ИК ПЗС) с объективом для диапазона длин волн 1,1…5,3 мкм, например объективом из оптического кремния. Для записанного теплового излучения измеряют температуру в i,j-й точке поля изображения, локализуют участки изображения с температурой, превышающей пороговое значение, и передают видеоизображения по радиоканалу на наземные пункты приема данных для анализа. Транспонирование полученного видеоизображения в видимый диапазон (λвд) осуществляется по зависимости типа λвд=f(λ, λmin, Δλпд), например, путем вычисления по формуле где λ - текущее значение длины волны, λmin - минимальное значение длины волны в выбранном поддиапазоне длин волн, Δλпд - рассматриваемый поддиапазон длин волн.

Для обработки термовидеоинформации используют решающее устройство, обеспечивающее вычисление значение температуры в рассматриваемой точке поля изображения. Решающее устройство системы обработки термовидеоинформации состоит из совокупности функциональных блоков обработки сигнала «холодного» изображения и яркостных сигналов i,j-й точке поля изображения в соответствии с планковским распределением в диапазоне длин волн. Решающее устройство включает последовательно связанные первую и вторую схемы, относящиеся к «холодному» изображению и выдающие значения энергии светового излучения и интегрального коэффициента излучения заданного типа материала по единственному значению яркости; последовательно связанные третью и четвертую схемы, параллельные первой и второй схемам и относящиеся к текущему значению яркости в i,j-й точке поля изображения, по которому выдается значение энергии светового излучения и значение интегрального коэффициента излучения заданного типа материала. Решающее устройство системы обработки термовидеоинформации включает четыре схемы сравнения, пять схем деления, четыре схемы умножения, два блока вычисления длины волны, блок логарифмирования, блок возведения в пятую степень, блок возведения в минус первую степень, блок возведение величины е в заданную степень, блок вычитания.

Первый вход решающего устройства является входом яркостного сигнала «холодного изображения» и входом первой схемы сравнения, на выходе которого формируется информация об энергии излучения объекта в нормальных условиях. Выход первой схемы сравнения соединен со входом первого блока вычисления длины волны, выход которого соединен со входом второй схемы сравнения, откуда получают информацию об интегральном коэффициенте теплового излучения объекта в нормальных условиях, первым входом первой схемы умножения и вторым входом второй схемы деления. Второй вход решающего устройства является входом яркостного сигнала в i,j-точке поля изображения и входом третьей схемы сравнения, на выходе которого формируется информация об энергии излучения объекта в i,j-точке поля изображения в текущий момент времени. Выход третьей схемы сравнения соединен с входом второго блока вычисления длины волны. Выход второго блока вычисления длины волны соединен с входом четвертой схемы сравнения, откуда получают информацию об интегральном коэффициенте теплового излучения объекта в в i,j-точке поля изображения в текущий момент времени, первым входом второй схемы деления и первым входом третьей схемы деления.

Первый вход первой схемы деления соединен с первым входом устройства. Второй вход первой схемы деления соединен со вторым входом устройства, где вычисляется отношение интенсивностей излучения в текущих и нормальных условиях. Выход первой схемы деления соединен с первым входом второй схемы умножения. Выходы второй и четвертой схемы сравнения соединены соответственно с первым и вторым входом четвертой схемы деления, где вычисляется отношение интегральных коэффициентов теплового излучения объекта в текущих и нормальных условиях. Выход четвертой схемы деления соединен соответственно со вторым входом втором схемы умножения. Выход второй схемы деления соединен с входом блока возведения в пятую степень, выход которого соединен с третьим входом втором схемы умножения. Выход второй схемы деления, где вычисляется отношение длин волн излучения объекта в текущих и нормальных условиях, соединен с входом блока возведения в пятую степень. Выход блока возведения в пятую степень соединен с третьим входом второй схемы умножения.

Выход первой схемы умножения соединен с первым входом пятой схемы деления. Выход блока памяти, где хранится информация о константах h, с и k, а также о значении температуры «холодного изображения», соединен со вторыми входами третьей и пятой схемы деления. Выход второй схемы умножения соединен с первым входом третьей схемы умножения. Вход блока возведения константы е в заданную степень соединен с выходом пятой схемы деления, а выход - с входом блока вычитания. Второй вход третьей схемы умножения соединен с выходом блока вычитания, а выход - с входом блока логарифмирования, выход которого соединен с входом блока возведения в минус первую степень, выход которого соединен с первым входом четвертой схемы умножения, второй вход которого соединен с выходом третьей схемы деления. Выход четвертой схемы умножения является выходом решающего устройства, где вычисляется значение температуры в i,j-точке поля изображения.

Заявленный технический результат достигается за счет того, что контроль и измерение температуры термонагруженного объекта осуществляется одновременно двумя цифровыми камерами, работающими в инфракрасном и ультрафиолетовом диапазонах. Обработка данных с этих камер выполняется частично на борту космического аппарата или иного летающего объекта, а частично - в процессе наземной обработки. Для анализа оператором температурной ситуации на объекте данные с видеокамер транспонируются из инфракрасного и ультрафиолетового диапазонов в видимый диапазон, каждой температуре из рабочего диапазона соответствует свой цвет на экране дисплея на рабочем месте оператора. Разделение обработки температурной информации на бортовую и наземную позволяет осуществлять на борту локализацию отдельных участков (или точек) поля изображения объекта с температурой, превышающей допустимую. Допустимый порог температуры либо вводится на Земле оператором при непосредственном отслеживании термообстановки объекта, либо однократно программируется при разработке программы функционирования бортового процессора. Полученные на борту данные передаются вместе с телеметрической информацией на Землю. В результате, данный подход позволяет существенно сократить информационный поток, предназначенный для видеоинформации, передаваемой на Землю.

Человеческому глазу доступен только видимый диапазон длин волн 0,38…0,74 мкм, однако изменение температуры в изображении исследуемой области должно быть видимо при любом диапазоне длин волн. Для этого в разработанном способе обработки термовидеоинформации предложен следующий алгоритм пересчета длин волн из инфракрасного и ультрафиолетового диапазонов в видимый диапазон длин волн, который заключается в следующем.

Если воспользоваться законом смещения Вина:

где b - постоянная Вина, равная 2896 мкм*K,

λ - длина волны,

можно получить выражение для температуры:

Полный диапазон длин волн для отслеживания температурных параметров наблюдаемого объекта разбивается на поддиапазоны ИК1 - средний ИК-поддиапазон, ИК2 - ближний ИК-поддиапазон, ВД - видимый поддиапазон длин волн, УФ - ближний ультрафиолет и в соответствии с (2) вычислим температурные диапазоны для каждого из них, результаты вычислений приведены в табл. 1.

Столь высокие температуры взяты по причине возникновения туннельного эффекта - резкого выброса энергии в данном случае за счет резкого повышения температуры. Так, в силу специфики материалов, из которых изготовлены элементы космического аппарата, их разрушение происходит при Т >(1500…2000) K. Следовательно, области, подвергшиеся резкому повышению температуры, требуют особого внимания к их рассмотрению и анализу.

Для отображения на дисплее монитора все значения температур должны попадать в видимый диапазон длин волн от 0,38 мкм до 0,74 мкм.

Δλвд=0,74-0,38=0,36 мкм

В силу того, что в данном способе идет цифровая обработка сигнала, сначала вычисляется цена кванта для каждого из поддиапазонов длин волн, приведенных в табл. 1, взяв шаг по температуре равным средней погрешности измерения температуры у цветовых пирометров ΔТ=2K

где - рассматриваемый в соответствии с табл. 1 поддиапазон длин волн,

- максимальная температура рассматриваемого поддиапазона,

- минимальная температура рассматриваемого поддиапазона,

ΔT - погрешность измерения температуры.

Из табл. 2 видно, что

Теперь в соответствии с (3) можно найти цену кванта для каждого из поддиапазонов.

Полученные результаты расчетов цены кванта поддиапазонов длин волн приведены в табл. 3.

Пересчет длин волн в видимый спектр иллюстрируется фиг. 1.

Пусть λ - текущее значение длины волны, а у - вспомогательная промежуточная величина для пересчета, которая определяется выражением

где - минимальное значение величины длины волны в выбранном диапазоне, - цена кванта выбранного поддиапазона.

Тогда пересчитанное в видимый спектр значение длины волны будет

где - ширина видимого диапазона волн, - минимальное значение длины волны видимого диапазона.

Так как Δλвд=0,36 мкм, а то, подставив данные значения в формулу (5), получим формулу пересчета длин волн в видимый спектр:

Следующий пример иллюстрирует предложенный способ транспонирования, например диапазона ИК2 в видимый диапазон.

Возьмем крайнее значение длины волны Таким образом, при пересчете в соответствии с (6) должно быть Δλвд=0,74 мкм. Если проверить это, получим

Следовательно, соотношение (15) адекватно для пересчета длин волн в видимый спектр из любого диапазона.

Блок-схема алгоритма предложенного способа обработки термовидеоинформации, содержащая следующие блоки, представлена на фиг. 2: блок видеозаписи изображений ИК- и УФ-видеокамерами 1; блок измерения температуры объекта в i,j-точке видеокадра 2; блок локализации участков изображения с температурой, превышающей пороговое значение 3; блок передачи видеоизображения на на земную станцию обработки информации 4; блок транспонирования видеоизображения из ИК- и УФ-диапазонов в видимый 5; блок запись видеоинформации в память ЭВМ 6; блок анализа видеоизображений оператором 7.

Процесс обработки термовидеоинформации складывается из формирования на борту космического аппарата с помощью видеокамер ИК- и УФ-диапазонов видеосигналов изображения исследуемого объекта в блоке видеозаписи 1, определения решающим устройством температуры объекта в i,j-точке поля изображения 2, локализации участков изображения, с температурой превышающей пороговое значение 3, и последующей передачей видеоизображения по радиоканалу на наземные пункты приема данных 4. В процессе наземной обработки данных, поступивших от бортовой аппаратуры космического аппарата, осуществляется транспонирование сигналов видеоизображения из ИК- и УФ-диапазонов в видимый 5, запись транспонированного видеосигнала в память ЭВМ 6 и анализ видеоизображения оператором 7.

Для наземной обработки оператор получает информацию о номере зоны обзора, координатах наиболее термонагруженных областей (точек), относящихся к данной зоне обзора, их температуру и уровень превышения допустимого температурного порога. Пакеты видеоинформации, поступающие от наземной станции в реальном времени, идут на персональный компьютер оператора, где на мониторе отображается видеоинформация, которая так же автоматически записывается на жесткий диск в формате МР4. Оператор может выводить картинку, получаемую от любой из камер, выбрав интересующую его из заданного списка и рассматривая картинку с нужным ему разрешением. Просмотр видеоизображения в реальном времени позволяет определять температуру в интересующей оператора области космического аппарата.

В процессе видеоконтроля оператор выбирает зону обзора согласно эксплуатационным данным, спектральный поддиапазона до появления цветной картинки в поле видимого излучения, интересующую область зоны обзора для измерения температуры, масштаба для изменения размеров в пределах зоны обзора видеокамеры (увеличение/уменьшение), координаты точки в пределах зоны обзора, где определяется температура. Расположение зон обзора термонагруженных элементов космических аппаратов и ракет-носителей задается в эксплуатационной документации. Размеры зон обзора видеокамер определяются с учетом характеристик видеорегистрирующей системы при проектировании и наземных испытаниях конкретного космического аппарата или ракеты-носителя.

Каждому спектральному диапазону соответствует своя градуировочная шкала температур. Пурпурный цвет соответствует менее нагретой области зоны обзора выбранного спектрального поддиапазона, темно-фиолетовый цвет - наиболее нагретой области. Видеоизображение отображается всегда в видимом спектре, при этом текущее изображение отображается путем наложения его на «холодное» изображение - изображение, снятое видеокамерой в рассматриваемой зоне обзора при нормальных условиях в соответствии с СП 2.2.4.548-96 и ГОСТ 12.1.005-88 (Тср=20°С, р=747 мм рт.ст., относительная влажность воздуха δ=(40-60)%). Оператор заранее знает цветовую градацию в соответствии с температурой. Видеоизображения сразу после окончания полета космического аппарата или ракеты-носителя должны автоматически сохраняться в указанную в папку, предусмотренную программой для каждого из спектральных поддиапазонов каждой зоны обзора. При просмотре сохраненных видеофайлов оператор может узнавать информацию о температуре и координатах выбранной точки, что позволяет производить детальный анализ термообстановки наблюдаемых узлов космических аппаратов или ракет-носителей.

Вычисление значения температуры в рассматриваемой точке поля изображения выполняет решающее устройство системы обработки термовидеоинформации, функционирующее на принципе определения температуры по величине отношения интенсивностей излучения в двух длинах волн. За λ1 берется текущее значение длины волны (яркости, энергии) в рассматриваемой точке поля изображения, а за λ2 - «холодное» изображение. Т.о. λ2хол. «Холодное» изображение - это изображение, снятое видеокамерой в рассматриваемой зоне обзора при нормальных условиях в соответствии с СП 2.2.4.548-96 и ГОСТ 12.1.005-88 (Тср=20°С, р=747 мм рт.ст., относительная влажность воздуха δ=(40-60)%).

Информация о яркости в ij-й точке k-го кадра Yijk поступает на суммирующее по числу кадров устройство

а далее усредняется по общему числу кадров за секунду L:

Таким образом, получается усредненное по общему числу кадров в секунду значение яркости в рассматриваемой точке Yij.

Алгоритм работы решающего устройства основан на планковском распределении в диапазоне длин волн, а именно:

где k=1,38*10-23 Дж/К - постоянная Больцмана, h=6,63*10-34 Дж*с - постоянная Планка, с=3*108 м/с - скорость света, Т - температура, K, λ - длина волны, м, ελ - интегральный коэффициент теплового излучения.

Отношение интенсивностей текущего изображения в рассматриваемой точке и «холодного» изображения можно выразить в виде следующего выражения:

Зная Tхолср=20°С, найдем Tij из (11):

Пусть , тогда из (13) найдем значение температуры в рассматриваемой точке поля изображения:

Структурная схема решающего устройства обработки термовидеоинформации, реализующего вычисление значение температуры в рассматриваемой точке поля изображения в соответствии с предложенным алгоритмом (14), представлена на фиг. 3.

Решающее устройство системы обработки термовидеоинформации, включает: четыре схемы сравнения 8, 9, 10, 11; пять схем деления 16, 17, 18, 19, 20; четыре схемы умножения 12, 13, 14, 15; два блока вычисления длины волны 21, 22; блок логарифмирования 23; блок возведения в пятую степень 24; блок возведения в минус первую степень 25; блок возведение величины е в заданную степень 26; блок вычитания 27; блок памяти 28.

Первый вход решающего устройства является входом яркостного сигнала «холодного изображения» и входом первой схемы сравнения 8, на выходе которой формируется информация об энергии излучения объекта в нормальных условиях. Выход первой схемы сравнения соединен со входом первого блока вычисления длины волны 21, выход которого соединен со входом второй схемы сравнения 10, откуда получают информацию об интегральном коэффициенте теплового излучения объекта в нормальных условиях, первым входом первой схемы умножения 12 и вторым входом второй схемы деления 17.

Второй вход решающего устройства является входом яркостного сигнала в i,j-й точке поля изображения и входом третьей схемы сравнения 9, на выходе которого формируется информация об энергии излучения объекта в i,j-точке поля изображения в текущий момент времени. Выход третьей схемы сравнения соединен с входом второго блока вычисления длины волны 22, выход которого соединен с входом четвертой схемы сравнения 11, откуда вытекает информация об интегральном коэффициенте теплового излучения объекта в i,j-й точке поля изображения в текущий момент времени, первым входом второй схемы деления 17 и первым входом третьей схемы деления 18.

Первый вход первой схемы деления 16, где вычисляется отношение интенсивностей излучения в текущих и нормальных условиях, соединен с первым входом решающего устройства, второй вход первой схемы деления 16 соединен со вторым входом решающего устройства. Выход первого устройства деления 16 соединен с первым входом второй схемы умножения 13, при этом выходы второй 10 и четвертой схемы сравнения 11 соединены соответственно с первым и вторым входом четвертой схемы деления 19, где вычисляется отношение интегральных коэффициентов теплового излучения объекта в текущих и нормальных условиях. Выход схемы деления 19 соединен соответственно со вторым входом второй схемы умножения 13.

Выход второй схемы деления 17, где вычисляется отношение длин волн излучения объекта в текущих и нормальных условиях, соединен с входом блока возведения в пятую степень 24, выход которого соединен с третьим входом второй схемы умножения 13. Выход первой схемы умножения 12 соединен с первым входом пятой схемы деления 20, а выход блока памяти 28, где хранится информация о константах h, с и k, а также о значении температуры «холодного изображения» (20°С), соединен со вторыми входами третьего 18 и пятой схемы деления 20. Выход второй схемы умножения 13 соединен с первым входом третьей схемы умножения 14, при этом вход блока возведения константы е в заданную степень 26 соединен с выходом пятой схемы деления 20, а выход с входом блока вычитания 27.

Второй вход третьей схемы умножения соединен с выходом блока вычитания 27, а выход - со входом блока логарифмирования 23, выход которого соединен со входом блока возведения в минус первую степень 25, выход которого соединен с первым входом четвертой схемы умножения 15, второй вход которого соединен с выходом третьей схемы деления 18. Выход четвертой схемы умножения 15 является выходом решающего устройства, где вычисляется значение температуры в i,j-й точке поля изображения.

Как видно из фиг. 3, имеют место четыре схемы сравнения:

- I 8 и II 10 относятся к «холодному» изображению и по единственному значению яркости выдается соответствующее значение энергии светового излучения Wхол, по которой, в соответствии с законом Планка, вычисляется длина волны: а также значение интегрального коэффициента излучения заданного типа металла (или графита) при Тхол=20°С;

- III 9 и IV 11 относятся к текущему значению яркости Yij в рассматриваемой точке поля изображения, по которому выдается соответствующее значение энергии светового излучения Wij, по которой, в соответствии с законом Планка, вычисляется длина волны:

а также значения интегрального коэффициента излучения ελij заданного типа металла (или графита) при соответствующем значении λij.

В итоге, достоверность контроля температуры термонагруженных узлов космических аппаратов и ракет-носителей достигается за счет:

анализа термообстановки одновременно в ИК- и УФ-диапазонах длин волн посредством использования двух типов приборов с зарядовой связью (ПЗС) и объективов: ПЗС с «виртуальной» фазой (ВФПЗС) и объектив для диапазона длин волн 0,3…1,0 мкм (из кварцевого стекла) и инфракрасный ПЗС (ИК ПЗС) с объективом для диапазона длин волн 1,1…5,3 мкм (из оптического кремния);

применения предложенного способа обработки полученного видеосигнала для его транспонирования в видимый диапазон, что обеспечивает эффективный анализ оператором термообстановки исследуемого объекта в расширенном диапазоне длин волн (от ИК до УФ);

использования предложенного решающего устройства для обработки термовидеоинформации, обеспечивающего вычисление значения температуры в рассматриваемой точке поля изображения.

Похожие патенты RU2633645C1

название год авторы номер документа
ЭЛЕКТРОННО-ОПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ПОЛУЧЕНИЯ ВИДЕОИЗОБРАЖЕНИЯ 2005
  • Здобников Александр Евгеньевич
  • Тарасов Виктор Васильевич
  • Соснин Федор Стефанович
  • Яроцкая Екатерина Александровна
  • Демидов Владимир Михайлович
RU2308116C1
ЭЛЕКТРОННО-ОПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ПОЛУЧЕНИЯ ВИДЕОИЗОБРАЖЕНИЯ 2012
  • Тарасов Виктор Васильевич
  • Здобников Александр Евгеньевич
  • Яроцкая Екатерина Александровна
RU2525827C2
СПОСОБ ВИЗУАЛЬНОГО СПЕКТРАЛЬНОГО АНАЛИЗА ТЕЛЕВИЗИОННОГО ИЗОБРАЖЕНИЯ ДАЛЬНЕГО ИНФРАКРАСНОГО ДИАПАЗОНА И УСТРОЙСТВО, РЕАЛИЗУЮЩЕЕ ЭТОТ СПОСОБ 2002
  • Виленчик Л.С.
  • Гончаренко Б.Г.
  • Курков И.Н.
  • Разин А.И.
  • Розвал Я.Б.
RU2233559C2
УСТРОЙСТВО ИМИТАЦИИ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ НАЗЕМНЫХ ОБЪЕКТОВ 2013
  • Кислицын Юрий Дмитриевич
  • Иванов Лев Алексеевич
  • Кожухов Игорь Владимирович
  • Кувшинов Владимир Сергеевич
  • Гузеев Борис Николаевич
  • Хисматов Игорь Федорович
  • Бурба Александр Алексеевич
  • Исаев Сергей Евгеньевич
  • Трифонов Максим Юрьевич
  • Лазарев Олег Владимирович
RU2547759C1
СПОСОБ ФОРМИРОВАНИЯ НЕСКАНИРУЮЩЕГО ТЕПЛОВИЗОРА С ПЕРЕМЕННЫМ УГЛОМ ПОЛЯ ЗРЕНИЯ И НЕСКАНИРУЮЩИЙ ТЕПЛОВИЗОР, РЕАЛИЗУЮЩИЙ ЭТОТ СПОСОБ 2002
  • Виленчик Л.С.
  • Гончаренко Б.Г.
  • Курков И.Н.
  • Разин А.И.
  • Розвал Я.Б.
RU2213429C1
СПОСОБ МАШИННОГО СТЕРЕОЗРЕНИЯ 2021
  • Горшков Александр Александрович
RU2816541C2
СПОСОБ ВЫРАВНИВАНИЯ НЕРАВНОМЕРНОЙ ЧУВСТВИТЕЛЬНОСТИ ФОТОПРИЕМНИКОВ СКАНИРУЮЩИХ ЛИНЕЕК ТЕПЛОВИЗОРОВ 1993
  • Белоконев Виктор Михайлович
  • Дегтярев Евгений Викторович
  • Рудый Игорь Владимирович
  • Малышев Игорь Александрович
  • Павлова Валерия Анатольевна
  • Тетерин Валерий Васильевич
  • Демеш Ольга Вячеславовна
  • Кабанов Виктор Федорович
RU2113065C1
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛУБИНЫ РАСПОЛОЖЕНИЯ ОБЪЕКТОВ С ЛЕТАТЕЛЬНОГО АППАРАТА 2007
  • Лобач Владимир Тихонович
  • Прозоровский Виктор Евгеньевич
  • Буряк Виктор Акимович
RU2349937C1
Способ получения цветоделенных изображений и устройство для его осуществления 1985
  • Капков Лев Александрович
  • Середин Виктор Михайлович
  • Циклис Александр Морисович
  • Шпигель Альберт Рахмильевич
SU1264129A1
Способ получения оптических изображений объектов, наблюдаемых при больших угловых скоростях, и устройство для его реализации 2017
  • Лагуткин Владимир Николаевич
  • Лукьянов Александр Петрович
RU2653087C1

Иллюстрации к изобретению RU 2 633 645 C1

Реферат патента 2017 года Способ обработки термовидеоинформации и решающее устройство для определения температуры объекта при осуществлении способа

Изобретение относится к области тепловизионной техники и касается способа обработки термовидеоинформации. Способ включает в себя видеозапись теплового излучения исследуемого объекта, транспонирование полученного видеоизображения в видимый диапазон и генерацию видеосигнала, в котором разной температуре наблюдаемого объекта соответствует разный цвет изображения. Видеозапись теплового излучения осуществляется на борту космического аппарата одновременно двумя камерами инфракрасного и ультрафиолетового диапазона с последующим определением температуры в i,j-й точке поля изображения, локализацией участков изображения с температурой, превышающей пороговое значение, и передачей видеоизображения по радиоканалу на наземные пункты приема данных для анализа. Транспонирование видеоизображения в видимый диапазон (λвд) осуществляется по зависимости типа λвд=f(λ, λmin, Δλпд), где λ - текущее значение длины волны, λmin - минимальное значение длины волны в выбранном поддиапазоне длин волн, Δλпд - рассматриваемый поддиапазон длин волн. Технический результат заключается в повышении достоверности контроля температуры исследуемого объекта. 2 н. и 2 з.п. ф-лы, 3 ил., 3 табл.

Формула изобретения RU 2 633 645 C1

1. Способ обработки термовидеоинформации, предусматривающий видеозапись теплового излучения исследуемого объекта и транспонирование полученного видеоизображения в видимый диапазон, генерацию видеосигнала, где разной температуре наблюдаемого объекта соответствует разный цвет изображения с последующим анализом оператором полученного изображения, отличающийся тем, что

видеозапись теплового излучения осуществляется на борту космического аппарата одновременно двумя камерами инфракрасного и ультрафиолетового диапазона посредством

приборов с зарядовой связью (ПЗС) и объективов двух типов, первый из которых

ПЗС с «виртуальной» фазой (ВФПЗС) с объективом для диапазона длин волн 0,3…1,0 мкм, а второй -

инфракрасный ПЗС (ИК ПЗС) с объективом для диапазона длин волн 1,1…5,3 мкм,

с последующим определением температуры в i,j-й точке поля изображения, локализацией участков изображения с температурой, превышающей пороговое значение, и передачей видеоизображения по радиоканалу на наземные пункты приема данных для анализа, причем

транспонирование полученного видеоизображения в видимый диапазон (λвд) осуществляется по зависимости типа λвд=f(λ, λmin, Δλпд), где λ - текущее значение длины волны, λmin - минимальное значение длины волны в выбранном поддиапазоне длин волн, Δλпд - рассматриваемый поддиапазон длин волн.

2. Способ по п. 1, отличающийся тем, что транспонирование полученного видеоизображения в видимый диапазон (λвд) осуществляется путем вычисления по формуле где λ - текущее значение длины волны, λmin - минимальное значение длины волны в выбранном поддиапазоне длин волн, Δλпд - рассматриваемый поддиапазон длин волн.

3. Решающее устройство для определения температуры объекта в i,j-й точке поля изображения при осуществлении способа обработки термовидеоинформации, характеризующееся тем, что состоит

из совокупности функциональных блоков обработки сигнала «холодного» изображения и яркостных сигналов i,j-й точке поля изображения в соответствии с планковским распределением в диапазоне длин волн, включающих

последовательно связанные первую и вторую схемы, относящиеся к «холодному» изображению и выдающие значения энергии светового излучения и интегрального коэффициента излучения заданного типа материала по единственному значению яркости,

последовательно связанные третью и четвертую схемы, параллельные первой и второй схемам и относящиеся к текущему значению яркости в i,j-й точке поля изображения, по которому выдается значение энергии светового излучения и значения интегрального коэффициента излучения заданного типа материала.

4. Решающее устройство по п. 3, характеризующееся тем, что включает

четыре схемы сравнения,

пять схем деления,

четыре схемы умножения,

два блока вычисления длины волны,

блок логарифмирования,

блок возведения в пятую степень,

блок возведения в минус первую степень,

блок возведение величины е в заданную степень,

блок вычитания, при этом

первый вход решающего устройства является входом яркостного сигнала «холодного изображения» и входом первой схемы сравнения, на выходе которого формируется информация об энергии излучения объекта в нормальных условиях, причем

выход первой схемы сравнения соединен со входом первого блока вычисления длины волны, выход которого соединен со

входом второй схемы сравнения, откуда получают информацию об интегральном коэффициенте теплового излучения объекта в нормальных условиях,

первым входом первой схемы умножения и

вторым входом второй схемы деления;

второй вход решающего устройства является входом яркостного сигнала в i,j-точке поля изображения и

входом третьей схемы сравнения, на выходе которого формируется информация об энергии излучения объекта в i,j-точке поля изображения в текущий момент времени, при этом

выход третьей схемы сравнения соединен с входом второго блока вычисления длины волны,

выход которого соединен с входом четвертой схемы сравнения, откуда получают информацию об интегральном коэффициенте теплового излучения объекта в в i,j-точке поля изображения в текущий момент времени,

первым входом второй схемы деления и

первым входом третьей схемы деления;

первый вход первой схемы деления соединен с

первым входом устройства,

второй вход первом схемы деления соединен со

вторым входом устройства, где вычисляется отношение интенсивностей излучения в текущих и нормальных условиях, при этом

выход первой схемы деления соединен с

первым входом второй схемы умножения, при этом

выходы второй и четвертой схемы сравнения соединены соответственно с

первым и вторым входом четвертой схемы деления, где вычисляется отношение интегральных коэффициентов теплового излучения объекта в текущих и нормальных условиях, при этом

выход этой схемы деления соединен соответственно со вторым входом второй схемы умножения, а

выход второй схемы деления соединен с входом блока возведения в пятую степень,

выход которого соединен с третьим входом второй схемы умножения;

выход второй схемы деления, где вычисляется отношение длин волн излучения объекта в текущих и нормальных условиях, соединен с

входом блока возведения в пятую степень, выход которого соединен с

третьим входом второй схемы умножения, при этом

выход первой схемы умножения соединен с

первым входом пятой схемы деления, а

выход блока памяти, где хранится информация о константах h, с и k, а также о значении температуры «холодного изображения», соединен со

вторыми входами третьей и пятой схемы деления;

выход второй схемы умножения соединен с

первым входом третьей схемы умножения, при этом

вход блока возведения константы е в заданную степень соединен с выходом пятой схемы деления, а выход с входом блока вычитания;

второй вход третьем схемы умножения соединен с выходом блока вычитания, а

выход с входом блока логарифмирования,

выход которого соединен с входом блока возведения в минус первую степень,

выход которого соединен с первым входом четвертой схемы умножения,

второй вход которого соединен с выходом третьей схемы деления;

причем выход четвертой схемы умножения является выходом решающего устройства, где вычисляется значение температуры в i,j-точке поля изображения.

Документы, цитированные в отчете о поиске Патент 2017 года RU2633645C1

Климов Д.И., Благодырев В.А
"Использование инфракрасного и ультрафиолетового диапазонов в видеотелеметрии для отслеживания температурных параметров КА и РН", УСПЕХИ СОВРЕМЕННОЙ РАДИОЭЛЕКТРОНИКИ, No 12, 2012 г., стр
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1
Климов Д.И., Благодырев В.А
"Представление температурных диапазонов нагретых элементов конструкций космического аппарата в видимом диапазоне длин волн с учетом интегрального коэффициента теплового излучения", ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ И ЭЛЕКТРОННЫЕ СИСТЕМЫ, т
Способ изготовления электрических сопротивлений посредством осаждения слоя проводника на поверхности изолятора 1921
  • Андреев Н.Н.
  • Ландсберг Г.С.
SU19A1
Способ крашения тканей 1922
  • Костин И.Д.
SU62A1
СПОСОБ ФОРМИРОВАНИЯ И ОТОБРАЖЕНИЯ СИГНАЛОВ ЦВЕТНЫХ, СПЕКТРОЗОНАЛЬНЫХ И ТЕПЛОВИЗИОННЫХ ИЗОБРАЖЕНИЙ 2013
  • Ковин Сергей Дмитриевич
  • Сагдуллаев Юрий Сагдуллаевич
RU2546982C2
US 2015304612 A1, 22.10.2015.

RU 2 633 645 C1

Авторы

Благодырёв Владимир Александрович

Климов Дмитрий Игоревич

Мягков Андрей Павлович

Хромов Олег Евгеньевич

Даты

2017-10-16Публикация

2016-10-17Подача