Способ получения нанокапсул сухого экстракта шиповника Российский патент 2017 года по МПК A61K36/738 A61K47/38 A61K9/51 A61J3/07 B82Y5/00 

Описание патента на изобретение RU2633746C1

Изобретение относится к области нанотехнологии, в частности к методам инкапсуляции.

Ранее были известны способы получения микрокапсул.

В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул экстракта шиповника, отличающимся тем, что в качестве оболочки нанокапсул используется натрий карбоксиметилцеллюлоза, а в качестве ядра - сухой экстракт шиповника при получении нанокапсул с применением ацетона в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием ацетона в качестве осадителя, а также использование натрий карбоксиметилцеллюлозы в качестве оболочки частиц и сухого экстракта шиповника - в качестве ядра.

Результатом предлагаемого метода является получение нанокапсул сухого экстракта шиповника в натрий карбоксиметилцеллюлозе.

Изобретение поясняется рис. 1-3.

ПРИМЕР 1. Получение нанокапсул сухого экстракта шиповника в соотношении ядро:оболочка 1:3

1 г сухого экстракта шиповника диспергируют в суспензию 3 г натрий карбоксиметилцеллюлозы в бензоле в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 5 мл ацетона. Выпавший осадок отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул сухого экстракта шиповника в соотношении ядро:оболочка 1:1

1 г сухого экстракта шиповника диспергируют в суспензию 1 г натрий карбокиметилцеллюлозы в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 5 мл ацетона. Выпавший осадок отфильтровывают и сушат при комнатной температуре.

Получено 2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул сухого экстракта шиповника в соотношении ядро:оболочка 5:1

5 г сухого экстракта шиповника диспергируют в суспензию 1 г натрий карбоксиметилцеллюлозы в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 10 мл ацетона. Выпавший осадок отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 4. Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.

Полученные нанокапсулы сухого экстракта шиповника характеризуются простой, высоким выходом и могут быть использованы в косметической, фармацевтической и пищевой промышленности.

Похожие патенты RU2633746C1

название год авторы номер документа
Способ получения нанокапсул сухого экстракта шиповника в агар-агаре 2016
  • Кролевец Александр Александрович
RU2627585C1
Способ получения нанокапсул сухого экстракта шиповника 2015
  • Кролевец Александр Александрович
RU2625501C2
Способ получения нанокапсул сухого экстракта шиповника в пектине 2016
  • Кролевец Александр Александрович
RU2636321C1
Способ получения нанокапсул сухого экстракта шиповника 2016
  • Кролевец Александр Александрович
RU2613881C1
Способ получения нанокапсул сухого экстракта крапивы 2018
  • Кролевец Александр Александрович
RU2678973C1
Способ получения нанокапсул сухого экстракта шиповника 2016
  • Кролевец Александр Александрович
RU2639092C2
Способ получения нанокапсул сухого экстракта шиповника 2016
  • Кролевец Александр Александрович
RU2630611C1
Способ получения нанокапсул вакцины "КС" от чумы свиней в натрий карбоксиметилцеллюлозе 2015
  • Кролевец Александр Александрович
RU2609741C1
Способ получения нанокапсул сухого экстракта левзеи 2017
  • Кролевец Александр Александрович
RU2671192C1
Способ получения нанокапсул сухого экстракта бадана 2020
  • Кролевец Александр Александрович
RU2738082C1

Иллюстрации к изобретению RU 2 633 746 C1

Реферат патента 2017 года Способ получения нанокапсул сухого экстракта шиповника

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта шиповника. Способ характеризуется тем, что сухой экстракт шиповника диспергируют в суспензию натрий карбоксиметилцеллюлозы в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, затем приливают ацетон, выпавший осадок отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка в нанокапсулах составляет 1:1, или 1:3, или 5:1. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул и может использоваться в ветеринарной и пищевой промышленности. 3 ил., 4 пр.

Формула изобретения RU 2 633 746 C1

Способ получения нанокапсул сухого экстракта шиповника, характеризующийся тем, что сухой экстракт шиповника диспергируют в суспензию натрий карбоксиметилцеллюлозы в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, затем приливают ацетон, выпавший осадок отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка в нанокапсулах составляет 1:1, или 1:3, или 5:1.

Документы, цитированные в отчете о поиске Патент 2017 года RU2633746C1

NAGAVARMA B
V
N
"Different techniques for preparation of polymeric nanoparticles", Asian Journal Pharm Clin Res, vol.5, suppl
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Устройство для электрической сигнализации 1918
  • Бенаурм В.И.
SU16A1
СОЛОДОВНИК В.Д
Микрокапсулирование, 1980, с
Регулятор для ветряного двигателя в ветроэлектрических установках 1921
  • Толмачев Г.С.
SU136A1
ZHANG DONG "Preparation and property of nano-encapsulated phase change material", Effstock 2009: thermal energy storage for efficiency and sustainability, 2009, реферат, фиг.1, 2
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ БИОПАГА-Д 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
RU2550950C1
KR 20140069469 A, 10.06.2014
СПОСОБ ИНКАПСУЛЯЦИИ СУХОГО ЭКСТРАКТА ШИПОВНИКА 2014
  • Кролевец Александр Александрович
  • Дубцова Галина Николаевна
  • Богачев Илья Александрович
  • Дедова Ирина Александровна
RU2561680C1

RU 2 633 746 C1

Авторы

Кролевец Александр Александрович

Даты

2017-10-17Публикация

2016-05-16Подача