Изобретение относится к области нанотехнологии, ветеринарии и пищевой промышленности.
Ранее были известны способы получения микрокапсул.
В пат. №2173140, МПК А61К 009/50, А61К 009/127 Российская Федерация, опубл. 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения
В пат. №2359662, МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубл. 27.06.2009 Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин).
Наиболее близким методом является способ, предложенный в пат. №2134967, МПК A01N 53/00, A01N 25/28, опубл. 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул экстракта сухого шиповника, отличающийся тем, что в качестве оболочки нанокапсул используется конжаковая камедь, а в качестве ядра - сухой экстракт шиповника при получении нанокапсул методом осаждения нерастворителем с применением хлороформа в качестве осадителя.
Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием хлороформа в качестве осадителя, а также использование конжаковой камеди в качестве оболочки и сухого экстракта шиповника - в качестве ядра.
Результатом предлагаемого метода являются получение нанокапсул сухого экстракта шиповника в конжаковой камеди камеди.
ПРИМЕР 1. Получение нанокапсул сухого экстракта шиповника, соотношение ядро:оболочка 1:3
1 г сухого экстракта шиповника диспергируют в суспензию 3 г конжаковой камеди в бутаноле, в присутствии 0,01 г Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и, как оксокислота, - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл хлороформа. Выпавший осадок отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 2. Получение нанокапсул сухого экстракта шиповника, соотношение ядро:оболочка 1:1
1 г сухого экстракта шиповника диспергируют в суспензию 1 г конжаковой камеди в бутаноле, в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл хлороформа. Выпавший осадок отфильтровывают и сушат при комнатной температуре.
Получено 2 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 3. Получение нанокапсул сухого экстракта шиповника, соотношение ядро:оболочка 5:1
5 г сухого экстракта шиповника диспергируют в суспензию 1 г конжаковой камеди в бутаноле, в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл хлороформа. Выпавший осадок отфильтровывают и сушат при комнатной температуре.
Получено 6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 4. Определение размеров нанокапсул методом NTA.
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном bASTM E2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length : Auto, Min Expected Size : Auto. длительность единичного измерения 215s, использование шприцевого насоса.
Полученные нанокапсулы сухого экстракта шиповника характеризуются простотой, высоким выходом и могут быть использованы в косметической, фармацевтической, ветеринарной и пищевой промышленности.
Изобретение относится в области нанотехнологии, ветеринарной и пищевой промышленности. Способ получения нанокапсул сухого экстракта шиповника, при этом в качестве оболочки нанокапсул используется конжаковая камедь, сухой экстракт шиповника диспергируют в суспензию конжаковой камеди в бутаноле в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, затем приливают 5 мл хлороформа, после чего выпавший осадок отфильтровывают и сушат при комнатной температуре, при этом соотношение сухого экстракта шиповника к конжаковой камеди составляет 1:1, 1:3 или 5:1. Вышеописанный способ позволяет упростить и ускорить процесс получения нанокапсул, увеличить выход по массе. 4 пр.
Способ получения нанокапсул сухого экстракта шиповника, характеризующийся тем, что в качестве оболочки нанокапсул используется конжаковая камедь, при этом сухой экстракт шиповника диспергируют в суспензию конжаковой камеди в бутаноле в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, затем приливают 5 мл хлороформа, после чего выпавший осадок отфильтровывают и сушат при комнатной температуре, при этом соотношение сухого экстракта шиповника к конжаковой камеди составляет 1:1, 1:3 или 5:1.
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ПИРЕТРОИДНЫЕ ИНСЕКТИЦИДЫ | 1997 |
|
RU2134967C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ В КОНЖАКОВОЙ КАМЕДИ | 2014 |
|
RU2555753C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ СУЛЬФАТА ХОНДРОИТИНА В КОНЖАКОВОЙ КАМЕДИ | 2014 |
|
RU2554763C1 |
СОЛОДОВНИК В.Д | |||
Микрокапсулирование /М.: Химия, 1980, стр.216 | |||
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ ГРУППЫ ЦЕФАЛОСПОРИНОВ В КОНЖАКОВОЙ КАМЕДИ В ХЛОРОФОРМЕ | 2012 |
|
RU2491939C1 |
Авторы
Даты
2017-03-21—Публикация
2016-02-15—Подача