Боевой элемент с координатором цели Российский патент 2017 года по МПК F42B15/00 F42B10/50 

Описание патента на изобретение RU2634875C1

Изобретение относится к области ракетной техники, а именно: к боевым элементам реактивных снарядов.

В настоящее время для повышения точности поражения разработаны и совершенствуются самоприцеливающиеся боевые элементы (СПБЭ), осуществляющие поиск цели на конечном участке полета. Для торможения и стабилизации СПБЭ широко используются парашюты. На участке поиска СПБЭ обычно расположен под определенным углом к вертикали и совершает вращение вокруг продольной оси. Датчик цели совершает обзор местности, и форма площади обзора представляет собой сходящуюся спираль.

Широко известны СПБЭ SMArt (Германия), SADARM (США), приведенные в журналах «Зарубежное военное обозрение», №11, 1994 г.; «ARMADA», 1998 г., №6, с 32; «GLOBAL DEFENCE REVEW», 1998 г.

СПБЭ SADARM содержит корпус с боевой частью и вращающуюся многокупольную парашютную систему.

Недостатком многокупольного парашюта является ограничение скорости вращения из-за его скручивания, а следовательно, ограничение площади обзора элемента, высока вероятность промаха датчика обзора мимо цели, что снижает боевую эффективность СПБЭ. У данной парашютной системы высока ветровая чувствительность, что приводит к боковому отклонению элемента.

СПБЭ SMArt содержит корпус с боевой частью и вращающийся парашют. Для уменьшения вращения элемента при вылете из артиллерийского ствола на его корпусе установлены раскрывающиеся лопасти.

Общим признаком с предложенной конструкцией самоприцеливающегося боевого элемента является наличие в составе аналогов корпуса с боевой частью и вращающегося парашюта.

Известен парашют для самоприцеливающегося боеприпаса по патенту РФ №2197711, кл. МПК F42B 15/00, содержащий купол с полюсным отверстием.

Наличие полюсного отверстия является одним из конструктивных решений, позволяющих уменьшить динамические нагрузки на парашют в момент ввода, обеспечить надежность раскрытия и отсутствие колебаний при обтекании воздушным потоком.

Известен самоприцеливающийся боевой элемент, содержащий корпус с боевой частью, вращающийся парашют с полюсным отверстием, при этом что внутри корпуса элемента перпендикулярно его продольной оси установлены выдвижные подпружиненные тормозные щитки шириной 0,5…1,0 максимального диаметра корпуса и размахом в раскрытом положении, не превышающим диаметр полюсного отверстия вращающегося парашюта, при этом расстояние от носовой части корпуса до тормозных щитков, измеряемое вдоль продольной оси корпуса, равно 1,2…2,0 координаты центра масс элемента от его носовой части (патент РФ №2451262, заявка №2011101010 от 12.01.2011 МПК: F42B 15/00, F42B 10/50-прототип).

Вышеописанный самоприцеливающийся боевой элемент работает следующим образом.

В заданной точке траектории полета реактивного снаряда выбрасывают СПБЭ, при этом вращающийся парашют вводится в набегающий воздушный поток. Стабилизирующий момент вращающегося парашюта парирует начальные угловые возмущения боевого элемента и обеспечивает ему устойчивый полет. За счет полюсного отверстия уменьшаются динамические нагрузки на парашют в момент ввода. Далее происходит выдвижение тормозных щитков в рабочее положение. За счет совместного действия щитков и парашюта происходит уменьшение скорости движения элемента до заданной величины. Одновременно с этим происходит вращение парашюта и элемента, датчик которого совершает обзор местности в поиске цели. При ее нахождении происходит срабатывание боевой части элемента.

Основными недостатками указанного самоприцеливающегося боевого элемента является значительная зависимость попадания в цель от ветровой нагрузки, возможность изменения скорости движения только по вертикальной составляющей, и соответственно невозможность корректирования траектории его движения для сближения с целью.

Задачей указанного изобретения является устранение указанных недостатков и создание боевого элемента с координатором цели, конструкция которого позволит изменять траекторию его движения для обеспечения максимально возможного сближения с целью.

Решение указанной задачи достигается тем, что предложенный боевой элемент с координатором цели, содержащий корпус с боевой частью, вращающийся парашют с полюсным отверстием, при этом внутри корпуса элемента, перпендикулярно его продольной оси установлены выдвижные подпружиненные тормозные щитки, согласно изобретению, содержит систему автономного наведения, включающую как минимум соединенные между собой контроллер управления перемещением и координатор цели боевого элемента, включающий оптический инфракрасный датчик цели, радиолокационный высотомер, соединенные с электронным блоком, при этом координатор цели дополнительно содержит магнитометрический датчик цели, соединенный с электронным блоком, включающим модуль анализа уровня инфракрасного излучения и модуль контроля изменения внешнего магнитного поля, логический модуль, один вход которого соединен с модулем анализа уровня инфракрасного излучения, другой с - модулем контроля изменения внешнего магнитного поля, выполненный с возможностью формирования на выходе управляющего сигнала на срабатывание боевого элемента, причем сигнал на выходе логического модуля формируется при условии наличия одновременно на обоих входах логического модуля сигналов, формирующихся в случае превышения установленных пороговых значений инфракрасного излучения и изменения внешнего магнитного поля, при этом в нижней части корпуса установлены с возможностью качания два ракетных двигателя твердого топлива, каждый из которых содержит как минимум две камеры, причем их сопла в выходной части состыкованы между собой по плоскости, с образованием смежных площадок, при этом органы управления их работой связаны с системой автономного наведения через контроллер управления перемещением, при этом продольная ось одного из упомянутых двигателей параллельна продольной оси боевого элемента, а продольная ось другого двигателя перпендикулярна продольной оси боевого элемента, при этом парашют установлен с возможностью отстыковки от корпуса по команде контроллера управления перемещением.

Сущность изобретения иллюстрируется чертежами, где на фиг. 1 представлен общий вид боевого элемента с выдвинутыми в рабочее положение тормозными щитками, вид сбоку, на фиг. 2 представлен общий вид боевого элемента с выдвинутыми в рабочее положение тормозными щитками, вид сверху, на фиг. 3 - вид на ракетные двигатели твердого топлива со стороны среза сопла, на фиг. 4 представлена принципиальная схема координатора цели. Цифрами «1» и «2» на фиг. 4 показаны входы в контроллер управления перемещением/логический модуль.

Координатор цели боевого элемента 1 содержит оптический инфракрасный датчик цели 2 для сканирования местности в инфракрасных лучах, радиолокационный высотомер 3 для определения высоты нахождения боевого элемента над подстилающей поверхностью, магнитометрический датчик 4 для осуществления контроля изменения внешнего магнитного поля, электронный блок 5, модуль анализа уровня инфракрасного излучения 6, модуль контроля изменения внешнего магнитного поля 7 и контроллер управления перемещением/логический модуль 8, соединенные между собой.

На корпусе боевого элемента 1 установлен вращающийся парашют 9 с полюсным отверстием 10 и два ракетных двигателя твердого топлива (РДТТ) 11 и 12. Каждый РДТТ 11 и 12 содержит камеры 13, 14 и 15, 16 соответственно.

Предложенный боевой элемент работает следующим образом.

В заданной точке траектории полета реактивного снаряда выбрасывают предложенный боевой элемент, при этом вращающийся парашют 9 вводится в набегающий воздушный поток. Стабилизирующий момент вращающегося парашюта парирует начальные угловые возмущения боевого элемента и обеспечивает ему устойчивый полет. За счет полюсного отверстия 10 уменьшаются динамические нагрузки на парашют в момент ввода. Далее происходит выдвижение тормозных щитков (не обозначены) в рабочее положение. За счет совместного действия щитков и вращающегося парашюта 9 происходит уменьшение скорости движения элемента до заданной величины. Одновременно с этим происходит вращение парашюта и координатора цели, датчики которого совершают обзор местности в поиске цели.

При включении координатора цели начинают работать высотомер 3 и электронный блок 5. При достижении заданной высоты над подстилающей поверхностью электронный блок 5 подает команду на включение оптического инфракрасного датчика цели 2 и магнитометрического датчика 4. Оптический инфракрасный датчик цели 2 осуществляет сканирование местности. Сигнал от инфракрасного датчика цели 2 поступает на вход модуля анализа уровня инфракрасного излучения 6, и, в случае превышения порогового уровня излучения, соответствующего признакам цели, с выхода модуля анализа уровня инфракрасного излучения 6 на вход логического модуля 8 подается сигнал.

Одновременно на вход модуля контроля изменения внешнего магнитного поля 7 поступает сигнал от магнитометрического датчика 4, осуществляющего контроль изменения внешнего магнитного поля. При превышении заданного порогового уровня, обусловленного присутствием объекта с заданными ферромагнитными характеристиками, с выхода модуля контроля изменения внешнего магнитного поля 7 на вход логического модуля 8 подается сигнал. При наличии на обоих входах логического модуля 8 сигналов, на выходе логического модуля 8 формируется управляющий сигнал на срабатывание боевого элемента 1.

При значительном удалении боевого элемента от цели, например при движении цели или значительной ветровой нагрузке, логический модуль 8 выдает команду на отстрел вращающегося парашюта 9 и включение ракетного двигателя твердого топлива 11 или 12, или обоих одновременно, при этом время работы двигателей 11 и 12 определяется требуемой траекторией движения к цели и требуемой тягой, создаваемой камерами 13, 14 и 15, 16. При необходимости для незначительной коррекции траектории включается камера 13 или 14, 15 или 16. При необходимости значительной коррекции траектории, включаются все камеры, в зависимости от направления полета и высоты.

При включении камер 13 и 14 двигателя 11 происходит замедление падения СПБЭ и набор требуемой высоты полета, а включение камер 15 и 16 двигателя 12 позволит приблизиться к цели на требуемое расстояние, после чего происходит срабатывание боевой части СПБЭ.

Использование предложенного технического решения позволит повысить эффективность применения боевого элемента за счет активного изменения траектории его движения для обеспечения максимально возможного сближения с целью.

Похожие патенты RU2634875C1

название год авторы номер документа
Самоприцеливающийся боевой элемент 2016
  • Черниченко Владимир Викторович
  • Иванов Алексей Владимирович
  • Малетин Андрей Николаевич
  • Ерин Олег Леонидович
  • Бирюков Александр Олегович
RU2652771C2
КАССЕТНАЯ БОЕВАЯ ЧАСТЬ 2014
  • Шепеленко Виталий Борисович
RU2576196C1
БОЕВАЯ ЧАСТЬ С КООРДИНАТОРОМ ЦЕЛИ 2014
  • Шепеленко Виталий Борисович
RU2577731C1
АВТОНОМНАЯ БОЕВАЯ ЧАСТЬ С КООРДИНАТОРОМ ЦЕЛИ 2014
  • Черниченко Владимир Викторович
RU2576106C1
ИНЖЕНЕРНЫЙ БОЕПРИПАС С КООРДИНАТОРОМ ЦЕЛИ 2014
  • Шепеленко Виталий Борисович
RU2576825C1
ПРОТИВОТАНКОВАЯ МИНА 2014
  • Черниченко Владимир Викторович
RU2576214C1
АВТОНОМНЫЙ ТАКТИЧЕСКИЙ БОЕПРИПАС 2014
  • Шепеленко Виталий Борисович
RU2577587C1
ПЕРЕНОСНОЙ ТАКТИЧЕСКИЙ БОЕПРИПАС 2014
  • Черниченко Владимир Викторович
RU2577831C1
САМОПРИЦЕЛИВАЮЩИЙСЯ БОЕВОЙ ЭЛЕМЕНТ 2011
  • Макаровец Николай Александрович
  • Денежкин Геннадий Алексеевич
  • Калюжный Геннадий Васильевич
  • Захаров Олег Львович
  • Сидоров Евгений Владимирович
  • Дубровский Владимир Абрамович
  • Базарный Алексей Николаевич
  • Батов Александр Геннадьевич
  • Плотников Александр Евгеньевич
  • Панков Алексей Борисович
RU2451262C1
ПЕРЕНОСНОЙ ТАКТИЧЕСКИЙ КОМПЛЕКС 2014
  • Шепеленко Виталий Борисович
RU2577745C1

Иллюстрации к изобретению RU 2 634 875 C1

Реферат патента 2017 года Боевой элемент с координатором цели

Изобретение относится к области ракетной техники и, в частности, к боевым элементам реактивных снарядов. Технический результат - повышение надежности работы устройства за счет возможности корректирования траектории его движения для сближения с целью. Боевой элемент с координатором цели содержит корпус с боевой частью. Предусмотрен парашют, обеспеченный возможностью вращения. Внутри корпуса перпендикулярно его продольной оси установлены выдвижные подпружиненные тормозные щитки. Устройство содержит систему автономного наведения. Она включает как минимум соединенные между собой контроллер управления перемещением и координатор цели боевого элемента. В нижней части корпуса установлены с возможностью качания два ракетных двигателя твердого топлива. Каждый из этих двигателей содержит как минимум две камеры. Сопла двигателей в выходной части состыкованы между собой по плоскости, с образованием смежных площадок. Органы управления двигателей связаны с системой автономного наведения через контроллер управления перемещением. Продольная ось одного из упомянутых двигателей параллельна продольной оси боевого элемента. Продольная ось другого двигателя перпендикулярна продольной оси боевого элемента. Парашют установлен с возможностью отстыковки от корпуса по команде контроллера управления перемещением. 3 ил.

Формула изобретения RU 2 634 875 C1

Боевой элемент с координатором цели, содержащий корпус с боевой частью, парашют с полюсным отверстием, имеющий возможность вращения, при этом внутри корпуса перпендикулярно его продольной оси установлены выдвижные подпружиненные тормозные щитки, отличающийся тем, что он содержит систему автономного наведения, включающую как минимум соединенные между собой контроллер управления перемещением и координатор цели боевого элемента с оптическим инфракрасным датчиком цели, радиолокационный высотомер, соединенный с электронным блоком, при этом координатор цели дополнительно содержит магнитометрический датчик цели, соединенный с электронным блоком, включающим модуль анализа уровня инфракрасного излучения и модуль контроля изменения внешнего магнитного поля, логический модуль, один вход которого соединен с модулем анализа уровня инфракрасного излучения, другой - с модулем контроля изменения внешнего магнитного поля, выполненный с возможностью формирования на выходе управляющего сигнала на срабатывание боевого элемента, причем сигнал на выходе логического модуля имеет возможность формирования при условии наличия одновременно на обоих входах логического модуля сигналов, формирующихся в случае превышения установленных пороговых значений инфракрасного излучения и изменения внешнего магнитного поля, при этом в нижней части корпуса установлены с возможностью качания два ракетных двигателя твердого топлива, каждый из которых содержит как минимум две камеры, причем их сопла в выходной части состыкованы между собой по плоскости с образованием смежных площадок, при этом органы управления их работой связаны с системой автономного наведения через контроллер управления перемещением, при этом продольная ось одного из упомянутых двигателей параллельна продольной оси боевого элемента, а продольная ось другого двигателя перпендикулярна продольной оси боевого элемента, при этом парашют установлен с возможностью отстыковки от корпуса по команде контроллера управления перемещением.

Документы, цитированные в отчете о поиске Патент 2017 года RU2634875C1

САМОПРИЦЕЛИВАЮЩИЙСЯ БОЕВОЙ ЭЛЕМЕНТ 2011
  • Макаровец Николай Александрович
  • Денежкин Геннадий Алексеевич
  • Калюжный Геннадий Васильевич
  • Захаров Олег Львович
  • Сидоров Евгений Владимирович
  • Дубровский Владимир Абрамович
  • Базарный Алексей Николаевич
  • Батов Александр Геннадьевич
  • Плотников Александр Евгеньевич
  • Панков Алексей Борисович
RU2451262C1
ИНЖЕНЕРНЫЙ БОЕПРИПАС С КООРДИНАТОРОМ ЦЕЛИ 2014
  • Шепеленко Виталий Борисович
RU2576825C1
САМОПРИЦЕЛИВАЮЩИЙСЯ БОЕПРИПАС 2006
  • Кореньков Владимир Владимирович
  • Терешин Алексей Андреевич
  • Супрунов Николай Андреевич
  • Гришечкин Алексей Алексеевич
RU2329457C1
АВТОНОМНАЯ БОЕВАЯ ЧАСТЬ С КООРДИНАТОРОМ ЦЕЛИ 2014
  • Черниченко Владимир Викторович
RU2576106C1
US 6142421 A1, 07.11.2000
US 5237925 A1, 24.08.1993.

RU 2 634 875 C1

Авторы

Черниченко Владимир Викторович

Иванов Алексей Владимирович

Малетин Андрей Николаевич

Ерин Олег Леонидович

Бирюков Александр Олегович

Даты

2017-11-07Публикация

2016-05-24Подача