Изобретение относится к устройствам для тонкого помола различных материалов, в частности к вибрационным мельницам, и может быть использовано в строительной, горнорудной, химической и других отраслях промышленности.
Известна конструкция вибрационной мельницы, содержащая цилиндрическую помольную камеру с мелющими телами, виброприводы основной и удвоенной частоты с горизонтально установленными дебалансными валами [авторское свидетельство СССР на изобретение №1590133, кл. В02С 19/16, 1990].
Недостатком известной конструкции вибрационной мельницы является низкая степень измельчения вследствие низкой интенсивности движения мелющих тел.
Известна также конструкция вибрационной мельницы, выбранной в качестве прототипа, содержащая помольную камеру с мелющими телами, установленную с помощью упругих элементов на неподвижном основании, снабженную двумя дебалансными виброприводами, каждый из которых включает приводной вал с индивидуальным приводом вращения, выполненным с возможностью независимого изменения угловой скорости и направления вращения приводного вала, а оси вращения дебалансов расположены перпендикулярно плоскости поперечной симметрии помольной трубы [патент РФ на изобретение №2501608, МПК В02С 19/00, 2013].
Недостатком этого устройства является неспособность получать готовый продукт с высокой степенью измельчения ввиду сегрегации мелющих тел.
Задачей изобретения является повышение степени измельчения материалов за счет предотвращения сегрегации мелющих тел различного диаметра и интенсификации их движения.
Это достигается тем, что вибрационная мельница включает цилиндрическую помольную камеру, заполненную мелющими телами, установленную с помощью упругих элементов на неподвижном основании. Помольная камера жестко соединена с боковыми дебалансными виброприводами, которые расположены на ее диаметрально противоположных сторонах в плоскости, поперечной симметрии помольной камеры. Дебалансные виброприводы состоят из валов с приводами, выполненные с возможностью независимого изменения угловой скорости и направления вращения, и дебалансов, масса которых может изменяться. Оси вращения боковых дебалансных виброприводов расположены перпендикулярно плоскости поперечной симметрии помольной камеры. В предложенном решении боковые дебалансные виброприводы смещены в разные стороны относительно горизонтальной оси, проходящей через центр тяжести помольной камеры. В нижней части помольной камеры установлен дополнительный дебалансный вибропривод с возможностью независимого изменения угловой скорости и направления вращения, ось вращения которого расположена на вертикальной оси, проходящей через центр тяжести помольной камеры.
Изобретение поясняется чертежом, где на фиг. 1 представлена схема поперечного сечения вибрационной мельницы.
Вибрационная мельница включает цилиндрическую помольную камеру 1, заполненную мелющими телами 2, например шарами различного диаметра от 1 мм до 15 мм. Помольная камера 1 установлена с помощью упругих элементов 3 и 4, например пружин, на неподвижном основании 5. С помольной камерой 1 жестко соединены, например сваркой, боковые дебалансные виброприводы 6 и 7, которые расположены на ее диаметрально противоположных сторонах. Ось вращения А бокового дебалансного вибропривода 6 смещена на расстояние а от горизонтальной оси В, проходящей через центр тяжести С помольной камеры 1, а ось вращения D бокового дебалансного вибропривода 7 смещена на расстояние b в противоположную сторону от горизонтальной оси В. Боковые дебалансные виброприводы 6 и 7 смещены в разные стороны относительно горизонтальной оси В, проходящей через центр тяжести С в плоскости поперечной симметрии помольной камеры 1, при этом оси вращения А и D боковых дебалансных виброприводов 6 и 7 расположены перпендикулярно плоскости поперечной симметрии помольной камеры 1.
Величины а и b смещения осей А и D вращения боковых дебалансных виброприводов 6 и 7 относительно горизонтальной оси В центра тяжести С цилиндрической помольной камеры 1 могут находиться в соотношении: а>b; а<b; а=b.
В нижней части с помольной камерой 1 жестко соединен, например сваркой, дополнительный дебалансный вибропривод 8. Ось вращения Е дополнительного дебалансного вибропривода 8 расположена на вертикальной оси F, проходящей через центр тяжести С помольной камеры 1.
Дебалансные виброприводы 6, 7 и 8 состоят из валов с приводами (на схеме не показаны), выполненные с возможностью независимого изменения угловой скорости и направления вращения, и дебалансов (на схеме не показаны), масса которых может изменяться.
Сверху помольной камеры 1 закреплен, например с помощью сварки, загрузочный патрубок 9, расположенный на вертикальной оси F, проходящий через центр тяжести С. Для разгрузки готового продукта используется разгрузочный патрубок (на схеме не показан), расположенный в нижней части помольной камеры 1.
В предложенном решении мельница работает следующим образом.
В цилиндрическую помольную камеру 1, установленную с помощью упругих элементов 3 и 4 на неподвижном основании 5, загружаются мелющие тела 2 различного диаметра. Включаются приводы дебалансных виброприводов 6, 7 и 8, выполненные с возможностью независимого изменения угловой скорости и направления вращения, мелющие тела 2 в помольной камере 1 начинают сложно-пространственное движение, относительно собственных центров масс, относительно внутренней поверхности помольной камеры 1 и относительно центра тяжести С.
Затем в помольную камеру 1 через загрузочный патрубок 9 подается измельчаемый материал, например цемент. Частицы материала, перемещаясь в зазорах между мелющими телами, измельчаются за счет ударных, истирающих и раздавливающих нагрузок.
Интенсификация движения мелющих тел достигается тем, что оси вращения А и D боковых дебалансных виброприводов 6 и 7 смещены относительно центра тяжести С в противоположных направлениях, в связи с этим каждый из боковых дебалансных виброприводов 6 и 7 генерирует не только центробежную силу, но и вращающий момент относительно вертикальной F и горизонтальной В осей. Величина генерируемого вращающего момента прямопропорциональна величине а смещения оси вращения А бокового дебалансного вибропривода 6 и величине b смещения оси вращения D бокового дебалансного вибропривода 7. В связи с этим все мелющие тела и измельчаемый материал, находящиеся в помольной камере 1, приобретают свою собственную траекторию движения и существенно различные скорости перемещения, предотвращающие при этом сегрегацию мелющих тел 2. Величина вращающих моментов зависит от величин а и b смещения осей А и D вращения боковых дебалансных виброприводов 6 и 7. Причем, чем дальше величины а и b от горизонтальной оси В, тем больше вращающий момент, и наоборот, чем ближе величины а и b к горизонтальной оси В, тем меньше вращающий момент. Если а=b=0, интенсивность движения мелющих тел 2 существенно снижается - снижается эффективность процесса измельчения.
Наличие дополнительного дебалансного вибропривода 8 в нижней части помольной камеры 1 предотвращает сегрегацию мелющих тел 2, создавая направленные вертикальные колебания помольной камеры 1.
Комплексное воздействие дебалансных виброприводов 6, 7 и 8 на цилиндрическую помольную камеру 1 создает неоднородное поле скоростей и кинетических энергий в мелющей среде, что создает условия селективного измельчения частиц материала и в целом повышает эффективность процесса измельчения.
Регулируя частоту и направление вращения дебалансных виброприводов, а также массу дебалансов, можно в широких пределах регулировать не только амплитудно-частотную характеристику движения мелющих тел, но и характер процесса измельчения в зависимости от прочности и размера частиц исходного продукта.
По мере уменьшения размера частиц они перемещаются в нижнюю часть помольной камеры 1 и затем готовый продукт выводится через разгрузочный патрубок из помольной камеры.
Таким образом, применение трех дебалансных виброприводов, два из которых смещены в разные стороны относительно горизонтальной оси, проходящей через центр тяжести помольной камеры, а третий расположен в нижней части помольной камеры, обеспечивает повышение эффективности процесса измельчения.
название | год | авторы | номер документа |
---|---|---|---|
ВИБРАЦИОННАЯ МЕЛЬНИЦА | 2012 |
|
RU2501608C2 |
Вибрационная мельница | 2018 |
|
RU2670520C1 |
Вибрационная мельница | 2018 |
|
RU2678075C1 |
Вибрационная мельница | 2019 |
|
RU2715638C1 |
Вибрационная мельница | 2018 |
|
RU2674620C1 |
Вибрационная мельница | 2020 |
|
RU2727848C1 |
Вибрационная мельница | 2018 |
|
RU2671169C1 |
ВИБРАЦИОННАЯ МЕЛЬНИЦА | 2016 |
|
RU2619985C1 |
Вибрационная резонансная планетарно-шаровая мельница | 2022 |
|
RU2819319C1 |
ВИБРАЦИОННАЯ ИЗМЕЛЬЧИТЕЛЬНАЯ МАШИНА | 2015 |
|
RU2604005C1 |
Изобретение относится к устройствам для тонкого помола различных материалов, в частности к вибрационным мельницам, и может быть использовано в строительной, горнорудной, химической и других отраслях промышленности. Вибрационная мельница содержит цилиндрическую помольную камеру 1, заполненную мелющими телами 2, установленную с помощью упругих элементов 3 и 4 на неподвижном основании 5. Помольная камера 1 жестко соединена с боковыми дебалансными виброприводами 6 и 7, которые расположены на ее диаметрально противоположных сторонах в плоскости, поперечной симметрии помольной камеры. Дебалансные виброприводы 6, 7 и 8 состоят из валов с приводами, выполненные с возможностью независимого изменения угловой скорости и направления вращения, и дебалансов, масса которых может изменяться. Оси вращения А и D боковых дебалансных виброприводов 6 и 7 расположены перпендикулярно плоскости поперечной симметрии помольной камеры. В предложенном решении боковые дебалансные виброприводы 6 и 7 смещены в разные стороны относительно горизонтальной оси В, проходящей через центр тяжести С помольной камеры. В нижней части помольной камеры установлен дополнительный дебалансный вибропривод 8 с возможностью независимого изменения угловой скорости и направления вращения, ось вращения Е которого расположена на вертикальной оси F, проходящей через центр тяжести С помольной камеры. В мельнице обеспечивается степень измельчения материалов и интенсификации их движения. 1 ил.
Вибрационная мельница, включающая цилиндрическую помольную камеру, заполненную мелющими телами, установленную с помощью упругих элементов на неподвижном основании, жестко соединенную с боковыми дебалансными виброприводами, расположенными на ее диаметрально противоположных сторонах в плоскости поперечной симметрии помольной камеры, каждый из которых состоит из валов с приводами, выполненными с возможностью независимого изменения угловой скорости и направления вращения, и дебалансов, масса которых может изменяться, а оси вращения боковых дебалансных виброприводов расположены перпендикулярно плоскости поперечной симметрии помольной камеры, отличающаяся тем, что боковые дебалансные виброприводы смещены в разные стороны относительно горизонтальной оси, проходящей через центр тяжести помольной камеры, в нижней части помольной камеры установлен дополнительный дебалансный вибропривод с возможностью независимого изменения угловой скорости и направления вращения, ось вращения которого расположена на вертикальной оси, проходящей через центр тяжести помольной камеры.
ВИБРАЦИОННАЯ МЕЛЬНИЦА | 2012 |
|
RU2501608C2 |
КОНУСНАЯ ВИБРАЦИОННАЯ ДРОБИЛКА | 2004 |
|
RU2257266C1 |
КОНУСНЫЙ УДАРНЫЙ ИСТИРАЮЩИЙ ИЗМЕЛЬЧИТЕЛЬ | 2011 |
|
RU2489211C1 |
Электродинамический вибратор | 1977 |
|
SU657870A1 |
Вязкоупругий демпфер | 1990 |
|
SU1821588A1 |
Токарный резец | 1924 |
|
SU2016A1 |
Авторы
Даты
2017-12-01—Публикация
2017-02-15—Подача