СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО ШТРИПСА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ Российский патент 2017 года по МПК C21D8/02 B21B1/26 C22C38/00 

Описание патента на изобретение RU2637544C1

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при производстве толстолистового штрипса из низколегированной стали толщиной от 10 до 15 мм.

Известен способ производства толстолистового проката из стали марки 09Г2С по ГОСТ 19281-14 (аналог). Недостатком известного способа является невозможность гарантированно обеспечить требования по доле вязкой составляющей в изломе образцов, определенной при испытании падающим грузом.

Наиболее близким по технологической сущности и достигаемому результату является способ производства штрипсов из низколегированной стали, включающий изготовление непрерывнолитых заготовок толщиной от 240 до 315 мм, последующий нагрев и многопроходную реверсивную контролируемую прокатку в клети толстолистового стана с последующим охлаждением листов на воздухе, что приводит к формированию в готом изделии мелкозернистой феррито-бейнитной структуры с требуемым уровнем механических свойств. При этом нагрев заготовок осуществляют до температуры 1150-1200°С, далее прокатку ведут в два этапа с промежуточным подстуживанием до температуры 920-980°С и с единичными обжатиями за проход во время черновой прокатки не менее 8%. Чистовую прокатку осуществляют с суммарным обжатием по толщине не менее 70% и завершают при температуре не выше 820°С. Химический состав стали включает углерод 0,003-0,14%; марганец 0,50-1,65%; кремний 0,15-0,7%; ниобий 0,015-0,06%; титан 0,005-0,03%; алюминий 0,02-0,05%; ванадий 0,02-0,14%; молибден не более 0,15%; хром не более 0,3%; никель не более 0,3%; медь не более 0,3%; кальций 0,0003-0,05%, остальное - железо и примеси (патент РФ №2201972, МПК C21D 8/02, С22С 38/58, В21В 1/26, опубл. 10.04.2003).

Недостатком известного способа является чрезмерное содержание легирующих и микролегирующих элементов для достижения требуемого комплекса механических свойств металлопроката и, следовательно, высокая себестоимость проката.

Задачей, на решение которой направлено заявляемое изобретение, является получение толстолистового штрипса класса прочности 365 МПа и выше с гарантией ударной вязкости при температурах до -60°С и долей вязкой составляющей в изломе образцов, определенной при испытании падающим грузом в температурном интервале до -20°С, не менее 60% при минимальных затратах на легирование.

Для решения поставленной задачи в способе производства толстолистового штрипса из низколегированной стали, включающем аустенизацию непрерывнолитых заготовок, черновую прокатку в раскат промежуточной толщины, его подстуживание, чистовую прокатку и охлаждение на спокойном воздухе, непрерывнолитую заготовку получают из стали со следующим соотношением химических элементов, мас. %:

суммарное содержание углерода и кремния 0,54-0,82 марганец 1,89÷3,24×(C+Si) суммарное содержание хрома, никеля и меди не более 0,15 суммарное содержание ванадия, ниобия и титана не более 0,02 азот не более 0,008 алюминий 0,02-0,05 сера не более 0,010 фосфор не более 0,018 железо и неизбежные примеси остальное

при обеспечении углеродного эквивалента Сэ в диапазоне 0,37-0,43%, чистовую прокатку начинают при температуре 810-850°С и завершают при температуре 720-760°С, при этом в готовом прокате формируется феррито-перлитная структура с размером зерна не крупнее 9 баллов, деформированного в направлении прокатки в соотношении не менее 2:1 по отношению к направлению толщины проката и полосчатостью не более 3 баллов, при этом соотношение объемной доли феррита к доле перлита не менее чем 4:1. Кроме того, черновую прокатку осуществляют с относительными обжатиями за проход не менее 8% за исключением проходов добивки ширины и до толщины раската не менее 3 толщин готового листа.

Сущность изобретения состоит в следующем.

Суммарное содержание углерода и кремния в заявленном диапазоне 0,54-0,82% позволяет гарантированно обеспечить прочностные характеристики штрипсового проката класса прочности 365 МПа. Снижение суммарного содержания элементов не позволит обеспечить норму по пределу текучести и прочности штрипса. Увеличение суммарного содержания элементов негативно скажется на пластических и вязких свойствах стали.

Заявленное содержания марганца позволяет полностью раскислить сталь, а также в совокупности с углеродом и кремнием направлено на обеспечение 365 класса прочности штрипса. При содержании марганца менее заявленного диапазона раскисленность стали снижается. Увеличение содержания марганца выше заявленного диапазона нецелесообразно, т.к. ведет к увеличению себестоимости штрипса.

Алюминий раскисляет и модифицирует сталь. Увеличение содержания более 0,05% графитизирует углерод, что оказывает отрицательное влияние на ударную вязкость материала и долю вязкой составляющей в изломе образцов при испытании падающим грузом. При содержании алюминия менее 0,02% его воздействие проявляется слабо, что негативно сказывается на комплексе механических свойств.

Содержание примесных элементов серы не более 0,010%, фосфора не более 0,018% и азота не более 0,008% обеспечивает получение комплекса механических свойств проката. Снижение концентрации этих элементов в стали приводит к чрезмерному увеличению себестоимости производства, что нецелесообразно. Увеличение содержания указанных элементов оказывает негативное влияние на ударные и пластические свойства стали.

Повышение суммарного содержания хрома, никеля, меди более 0,15% и ванадия, ниобия, титана более 0,02% приводит к необоснованному удорожанию проката.

Углеродный эквивалент в диапазоне 0,37-0,43% является гарантом обеспечения комплекса прочностных характеристик. При значении углеродного эквивалента за пределами заявленного диапазона приводит к нарушению баланса прочностных и вязких свойств штрипса. Углеродный эквивалент определяют по формуле:

где С, Mn, Si, Cr, Ni, Cu, V, Р - содержание углерода, марганца, кремния, хрома, никеля, меди, ванадия и фосфора в стали соответственно, %.

Чистовую прокатку начинают при температуре 810-850°С и заканчивают при температуре 720-760°С, что способствует формированию мелкодисперсной феррито-перлитной структуры штрипсового проката с соотношением объемной доли феррита к доле перлита не менее чем 4:1, с размером зерна не крупнее 9 баллов, деформированного в направлении прокатки в соотношении не менее 2:1 по отношению к направлению толщины проката и полосчатостью не более 3 баллов. При температуре начала чистовой прокатки выше 850°С происходит формирование более крупного размера зерна, а также не обеспечивается заданный интервал температуры конца чистовой прокатки. При температуре начала чистовой прокатки ниже 810°С невозможно вести прокатку с максимальными единичными обжатиями за проход ввиду ограничения по энергосиловым параметрам.

Формирование целевой феррито-перлитной структуры с размером зерна не крупнее 9 баллов, деформированного в направлении прокатки в соотношении не менее 2:1 по отношению к направлению толщины проката и полосчатостью не более 3 баллов позволяет обеспечить целевой баланс прочностных и вязких характеристик проката. Увеличение размеров зерна и полосчатости приводит к провалу ударной вязкости и доли вязкой составляющей в изломе образцов при испытании падающим грузом. Соотношение деформированности зерен является критерием достаточности проработки структуры непрерывнолитой заготовки по толщине проката для обеспечения механических свойств.

Кроме того, черновую прокатку осуществляют до толщины раската не менее 3 толщин готового листа. Это позволяет обеспечить протекание процессов интенсивной деформации в заданном температурном диапазоне чистовой стадии прокатки, максимально проработать структуру в стадии черновой прокатки, а также оптимально с точки зрения производительности процесса. Отклонение от указанной толщины раската приведет к невозможности достижения перечисленных преимуществ.

Черновую прокатку осуществляют с относительными обжатиями за проход не менее 8% за исключением проходов добивки ширины. Это позволяет разрушить литую структуру заготовки и измельчить зерно аустенита. Увеличение числа проходов в черновой стадии и соответствующее снижение единичных обжатий за проход отрицательно сказываются на проработке литой структуры по толщине, что в итоге приведет к неудовлетворительным результатам при испытаниях падающим грузом. Максимальные единичные обжатия за проход лимитируются условиями захвата металла и энергосиловыми параметрами прокатной клети.

Применение способа поясняется примером его реализации при производстве штрипсового проката на реверсивном стане 5000.

Выплавка стали осуществлялась в кислородном конвертере. Химический состав сталей приведен в таблице 1.

Непрерывнолитую заготовку толщиной 315 мм нагревали до температуры аустенизации, прокатывали в черновой стадии в раскат промежуточной толщины с определенными единичными обжатиями, подстуживали, прокатывали на чистовой стадии. После этого раскат подвергали охлаждению на спокойном воздухе.

Варианты реализации способа представлены в таблице 2. Эксплуатационные свойства и целевая структура полученных горячекатаных листов представлены в таблице 3.

Из таблиц 1, 2 и 3 следует, что при реализации заявленного способа производства (варианты №1, 2) готовые листы обладают необходимым комплексом прочностных и пластических свойств.

При запредельных значениях заявленных параметров (варианты №3, 4, 5, 6, 7) не удается гарантированно обеспечить комплекс механических свойств.

Технико-экономические преимущества рассматриваемого изобретения состоят в том, что использование предложенного способа позволяет получить штрипс класса прочности 365 МПа и выше с гарантией ударной вязкости при температурах до -60°С и долей вязкой составляющей в изломе образцов, определенной при испытании падающим грузом в температурном интервале до -20°С, не менее 60% при минимальных затратах на легирование.

В качестве базового объекта при определении технико-экономических преимуществ предложенного способа принят способ-прототип. Использование предложенного способа производства штрипсового проката позволяет достичь аналогичного комплекса свойств категории К52 без необходимости применения дорогостоящих легирующих и микролегирующих элементов.

Похожие патенты RU2637544C1

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОГО ЛИСТА ИЗ МИКРОЛЕГИРОВАННЫХ СТАЛЕЙ 2011
  • Колбасников Николай Георгиевич
  • Наумов Антон Алексеевич
  • Соколов Дмитрий Федорович
  • Зотов Олег Геннадьевич
  • Сосин Сергей Владимирович
  • Беляев Александр Анатольевич
  • Чебыкин Михаил Павлович
RU2460809C1
СПОСОБ ПРИЗВОДСТВА ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ ТОЛСТОЛИСТОВОЙ СТАЛИ 2013
  • Корчагин Андрей Михайлович
  • Мишнев Петр Александрович
  • Сахаров Максим Сергеевич
  • Цветков Дмитрий Сергеевич
  • Попова Светлана Дмитриевна
  • Матросов Максим Юрьевич
  • Тазов Максим Федорович
RU2532768C1
Способ производства штрипсового проката толщиной 10-40 мм для изготовления прямошовных труб большого диаметра, эксплуатируемых в условиях экстремально низких температур 2021
  • Сахаров Максим Сергеевич
  • Мишнев Петр Александрович
  • Михеев Вячеслав Викторович
  • Липин Виталий Климович
  • Гелевер Дмитрий Георгиевич
  • Антипов Игорь Владимирович
RU2760014C1
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО НИЗКОЛЕГИРОВАННОГО ШТРИПСА 2009
  • Немтинов Александр Анатольевич
  • Скорохватов Николай Борисович
  • Клюквин Михаил Борисович
  • Корчагин Андрей Михайлович
  • Тихонов Сергей Михайлович
  • Голованов Александр Васильевич
RU2390568C1
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО НИЗКОЛЕГИРОВАННОГО ПРОКАТА 2011
  • Немтинов Александр Анатольевич
  • Скорохватов Николай Борисович
  • Голованов Александр Васильевич
  • Корчагин Андрей Михайлович
  • Клюквин Михаил Борисович
  • Тихонов Сергей Михайлович
  • Сосин Сергей Владимирович
  • Махов Геннадий Александрович
  • Сахаров Максим Сергеевич
RU2466193C1
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО НИЗКОЛЕГИРОВАННОГО ПРОКАТА 2009
  • Немтинов Александр Анатольевич
  • Скорохватов Николай Борисович
  • Емельянов Александр Матвеевич
  • Голованов Александр Васильевич
  • Корчагин Андрей Михайлович
  • Клюквин Михаил Борисович
  • Тихонов Сергей Михайлович
  • Румянцев Александр Васильевич
  • Сосин Сергей Владимирович
  • Сахаров Максим Сергеевич
RU2414515C1
Способ производства толстолистового проката для изготовления электросварных труб магистральных трубопроводов (варианты) 2022
  • Мишнев Петр Александрович
  • Адигамов Руслан Рафкатович
  • Сахаров Максим Сергеевич
  • Хадеев Григорий Евгеньевич
  • Матвеев Михаил Александрович
  • Рындин Антон Павлович
  • Мезин Филипп Иосифович
  • Михеев Вячеслав Викторович
  • Глухова Анастасия Геннадьевна
  • Матросов Максим Юрьевич
RU2805839C1
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО НИЗКОЛЕГИРОВАННОГО ШТРИПСА 2009
  • Немтинов Александр Анатольевич
  • Скорохватов Николай Борисович
  • Емельянов Александр Матвеевич
  • Ордин Владимир Георгиевич
  • Корчагин Андрей Михайлович
  • Тихонов Сергей Михайлович
  • Цветков Дмитрий Сергеевич
  • Попова Светлана Дмитриевна
  • Румянцев Александр Васильевич
RU2393238C1
Горячекатаный лист из низколегированной стали толщиной от 15 до 165 мм и способ его получения 2016
  • Михеев Вячеслав Викторович
  • Ваурин Виталий Васильевич
  • Сахаров Максим Сергеевич
  • Смелов Антон Игоревич
  • Корчагин Андрей Михайлович
  • Сычев Олег Николаевич
RU2638479C1
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНЫХ ЛИСТОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2016
  • Михеев Вячеслав Викторович
  • Корчагин Андрей Михайлович
  • Ваурин Виталий Васильевич
  • Сахаров Максим Сергеевич
  • Смелов Антон Игоревич
RU2633684C1

Реферат патента 2017 года СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО ШТРИПСА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при производстве толстолистового штрипса из низколегированной стали толщиной от 10 до 15 мм. Для получения штрипса класса прочности 365 МПа и выше с гарантией ударной вязкости при температурах до -60°С и долей вязкой составляющей в изломе образцов, определенной при испытании падающим грузом в температурном интервале до -20°С, не менее 60% при минимальных затратах на легирование получают непрерывнолитую заготовку из стали со следующим соотношением элементов, мас. %: ∑ (С+Si)=0,54-0,82, Mn (1,894÷3,24)×(C+Si), ∑ (Cr+Ni+Cu) не более 0,15, ∑ (V+Nb+Ti) не более 0,02, N не более 0,008, Al 0,02-0,05, S не более 0,010, P не более 0,018, железо и неизбежные примеси - остальное, Сэ=0,37-0,43%, заготовку подвергают черновой прокатке с относительными обжатиями за проход не менее 8% за исключением проходов добивки ширины и до толщины раската не менее 3 толщин готового листа, подстуживают и проводят чистовую прокатку раската при температуре начала 810-850°С и завершения 720-760°С с получением феррито-перлитной структуры с размером зерна не более 9 баллов, деформированного в направлении прокатки в соотношении не менее 2:1 по отношению к направлению толщины проката и полосчатостью не более 3 баллов. Соотношение объемной доли феррита к доле перлита не менее чем 4:1. 2 з.п. ф-лы, 3 табл.

Формула изобретения RU 2 637 544 C1

1. Способ производства толстолистового штрипса из низколегированной стали, включающий аустенизацию непрерывнолитой заготовки, черновую прокатку в раскат промежуточной толщины, его подстуживание, чистовую прокатку и охлаждение на спокойном воздухе, отличающийся тем, что непрерывнолитую заготовку получают из стали со следующим соотношением элементов, мас. %:

суммарное содержание углерода и кремния (С+Si) 0,54-0,82 марганец 1,89-3,24×(C+Si) суммарное содержание хрома, никеля и меди (Cr+Ni+Cu) не более 0,15 суммарное содержание ванадия, ниобия и титана (V+Nb+Ti) не более 0,02 азот не более 0,008 алюминий 0,02-0,05 сера не более 0,010 фосфор не более 0,018 железо и неизбежные примеси остальное

при углеродном эквиваленте Сэ = 0,37-0,43%, чистовую прокатку начинают при температуре 810-850°C и завершают при температуре 720-760°C с формированием в листе феррито-перлитной структуры с размером зерна не крупнее 9 баллов, деформированного в направлении прокатки в соотношении не менее 2:1 по отношению к направлению толщины проката и полосчатостью не более 3 баллов, при этом соотношение объемной доли феррита к доле перлита составляет не менее 4:1.

2. Способ по п. 1, отличающийся тем, что черновую прокатку осуществляют до толщины раската не менее 3 толщин готового листа.

3. Способ по п. 1, отличающийся тем, что черновую прокатку осуществляют с относительными обжатиями за проход не менее 8%.

Документы, цитированные в отчете о поиске Патент 2017 года RU2637544C1

СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО НИЗКОЛЕГИРОВАННОГО ШТРИПСА 2009
  • Немтинов Александр Анатольевич
  • Скорохватов Николай Борисович
  • Емельянов Александр Матвеевич
  • Ордин Владимир Георгиевич
  • Корчагин Андрей Михайлович
  • Тихонов Сергей Михайлович
  • Цветков Дмитрий Сергеевич
  • Попова Светлана Дмитриевна
  • Румянцев Александр Васильевич
RU2393238C1
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНЫХ ЛИСТОВ ДЛЯ СТРОИТЕЛЬНЫХ СТАЛЬНЫХ КОНСТРУКЦИЙ (ВАРИАНТЫ) 2014
  • Корчагин Андрей Михайлович
  • Михеев Вячеслав Викторович
  • Сахаров Максим Сергеевич
  • Сычев Олег Николаевич
  • Чибриков Сергей Константинович
RU2583536C1
СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2012
  • Казаков Игорь Владимирович
  • Молостов Михаил Александрович
  • Денисов Сергей Владимирович
  • Васильев Иван Сергеевич
  • Настич Сергей Юрьевич
  • Морозов Юрий Дмитриевич
  • Зинько Бронислав Филиппович
RU2519720C2
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ 2014
  • Мишнев Петр Александрович
  • Палигин Роман Борисович
  • Огольцов Алексей Андреевич
  • Новоселов Сергей Иванович
  • Митрофанов Артем Викторович
  • Купчик Галина Александровна
  • Голованов Александр Васильевич
  • Балашов Сергей Александрович
  • Сушков Александр Михайлович
  • Жвакин Николай Андреевич
  • Павлов Александр Александрович
  • Ломаев Владимир Иванович
  • Хафизов Ленар Расихович
RU2547087C1
JP 2010196160 A, 09.09.2010
ЗАКРЕПЛЕНИЕ МЕМБРАН В ЗВУКОПОГЛОЩАЮЩЕЙ СОТОВОЙ КОНСТРУКЦИИ 2012
  • Итихаси Фумитака
RU2594657C2

RU 2 637 544 C1

Авторы

Михеев Вячеслав Викторович

Корчагин Андрей Михайлович

Ваурин Виталий Васильевич

Сахаров Максим Сергеевич

Смелов Антон Игоревич

Даты

2017-12-05Публикация

2017-02-28Подача