Способ импульсной индуктивной геоэлектроразведки и устройство для его осуществления Российский патент 2017 года по МПК G01V3/08 

Описание патента на изобретение RU2639558C2

Предлагаемое изобретение относится к области электроразведки, а именно к методам электромагнитного зондирования становлением поля в ближней зоне, и может применяться для оценки изменения газонасыщенности объекта хранения газа и верхней надпродуктивной части разреза.

Известен способ геоэлектроразведки и устройство для его осуществления, в котором над траекторией горизонтальных скважин на время разработки высоковязкой нефти и битумов располагают стационарно генераторный контур (ГК) и внутри него систему измерительных контуров (ИК) меньших размеров. Каждый ИК через коммутатор подключен к регистратору, оснащенному устройством регулирования времени задержки. Во время регистрации электродвижущей силы (ЭДС) в ИК определяют временные задержки, на которых на фоне сигналов, регистрируемых одновременно всеми ИК, наблюдается контрастный рост наведенной ЭДС, которая соответствует сигналу от металлической обсадной колонны скважины. Привязывают ЭДС на выделенных задержках к траектории прохождения. На основе построенной зависимости продольной проводимости (S) от глубины (h) рассчитывают зависимости S от h на других ИК. По ним определяют мощность и глубину залегания продуктивного пласта. По измеренным ЭДС для исследуемого пласта определяют кажущееся удельное электрическое сопротивление (ρк) и рассчитывают коэффициент кажущейся битумонасыщенности по каждому циклу измерений (пат. РФ №2560997, G01V 3/08, опубл. 20.08.2015 г.).

Устройство для реализации известного способа состоит из импульсного генератора, генераторного и измерительного контуров, коммутатора и регистратора, при этом генераторный контур расположен стационарно над траекторией горизонтальных скважин, а внутри него стационарно расположена система измерительных контуров меньшего размера, при этом каждый измерительный контур через коммутатор подключен к регистратору, оснащенному устройством для регулирования времени задержки.

Известный способ предназначен для периодической регистрации текущего состояния электропроводности горной породы по глубине в режиме мониторинга для осуществления контроля за динамикой извлечения высоковязкой нефти и битума с привязкой к профилю горизонтальных скважин и решает задачу экспресс контроля за динамикой извлечения высоковязкой нефти и битума вдоль профиля горизонтальных скважин в реальном масштабе времени и своевременной корректировке режима закачки теплоносителя в ствол технологической скважины, а также режима отбора в стволе эксплуатационной скважины.

Известно устройство для геоэлектрозондирований, с помощью которого осуществляют периодическую подачу от импульсного генератора импульсов тока на вход генераторного контура и периодически, в паузах между импульсами, регистрацию наведенной ЭДС в измерительном контуре, предварительную установку длительности импульсов генерирующего тока, измерение величины импульса генерирующего тока и регистрацию отношения значения наведенной ЭДС к измеренной величине генерирующего тока, накопление во времени указанных отношений и расчет среднего значение указанного отношения по количеству точек, выбранных на кривой спада измеряемого сигнала (авт. свид. 1637547, G01V 3/10, приор. 02.02.1989 г. «ДСП»).

Известное устройство содержит: генератор, программируемый блок управления и регистрации, первый управляющий выход которого подключен к управляющему входу генератора, генераторного контура, вход которого подключен к основному выходу генератора, приемного контура и измерителя, содержащего последовательно соединенные усилитель и аналого-цифровой преобразователь, информационный выход и управляющий вход которого соединен с информационным входом и управляющим выходом программируемого блока управления и регистрации соответственно, причем дополнительный выход генератора соединен с опорным входом измерителя, информационный вход которого соединен с выходом приемного контура.

Недостаток известных устройств заключается в следующем.

В результате использования известных устройств получают недостаточный объем снятой информации с кривой спада из-за незначительного количества выбранных дискретных значений на кривой спада, что приводит к уменьшению дифференциации разреза при окончательной обработке полученной информации. Кроме того, из-за ограниченного количества снятий отсчетов на поздних временах на кривой спада, возникает низкая достоверность результатов измерений, которая приводит к снижению глубинности исследуемого объекта.

Задачей заявляемой группы изобретений является повышение точности и достоверности результатов измерений при увеличении глубинности исследуемого объекта.

Указанная задача решается тем, что в способе импульсной индуктивной геоэлектроразведки, включающем размещение генераторного и измерительного контуров на земной поверхности над исследуемым геологическим объектом, периодическую подачу от импульсного генератора импульсов тока на вход генераторного контура и периодически, в паузах между импульсами, регистрацию наведенной ЭДС в измерительном контуре, предварительную установку длительности импульсов генерируемого тока, измерение величины импульса генерируемого тока и регистрацию отношения значения наведенной ЭДС к измеренной величине генерируемого тока, накопление во времени указанных отношений и расчет среднего значение указанного отношения по количеству точек, выбранных на кривой спада измеряемого сигнала, в отличие от известного, программно задают величину шага дискретизации на кривой спада не менее одной микросекунды, и для каждой выбранной точки регистрируют по результатам 2n измерений среднее значение отношения наведенной ЭДС к измеренной величине генерируемого тока в момент времени перед выключением импульса этого тока, где n выбирают от 0 до 8.

Кроме того, интегрируют отношения наведенной ЭДС к измеренной величине генерируемого тока для каждого значения времени на кривой спада на поздних временах путем расчета средней величины указанного отношения в окрестностях выбранного значения времени по результатам 2n дополнительных дискретных измерений с шагом от 1 микросек до 4,6 микросек, где n выбирают от 0 до 8.

Диапазон времени регистрации измеряемых сигналов устанавливают от 3 микросек до 1000 милисек.

Указанная задача решается тем, что в заявляемом устройстве импульсной индуктивной геоэлектроразведки, содержащем генератор импульсов тока, генераторный и измерительный контуры, установленные на земной поверхности исследуемого геологического объекта, программируемый блок управления и регистрации измеренных сигналов с постоянно записывающим устройством, измеритель сигналов, включающий каскад усилителей, коммутатор и аналого-цифровой преобразователь - АЦП, силовой ключ подачи импульсов генератора, в отличие от известного, каскад усилителей, АЦП и силовой ключ снабжены индивидуальными блоками питания.

На фиг. 1 представлена блок-схема заявляемого устройства.

На фиг. 2 представлена диаграмма записи импульсов тока J во времени t, где I-II обозначена кривая спада измеряемого сигнала.

На фиг. 3 представлена кривая спада измеряемого сигнала с выделенным участком на поздних временах - A1-A2.

Для оценки изменения газонасыщенности объекта хранения газа и верхней части разреза околоскважинного пространства с целью выявления в указанном пространстве в режиме реального времени скоплений углеводородных газов, связанных с негерметичностью скважины или кровли объекта хранения газа, необходимо проводить мониторинг указанных изменений по всей площади газохранилища, для чего устанавливают систему генераторного и измерительного контуров на земной поверхности над исследуемым геологическим объектом и осуществляют в режиме мониторинга прием сигналов с измерительного контура.

Используемый метод зондирования становлением поля в ближней зоне основан на измерении ЭДС переходных процессов в незаземленных измерительных контурах, расположенных над исследуемым геологическим объектом, при пропускании импульсов тока по генераторному контуру. Особенностью метода является контроль за характером поздней стадии на кривой спада регистрируемого сигнала, характеризующей продольную проводимость объекта. В поздней стадии переходного процесса проявляется влияние более глубоких проводящих горизонтов (Сидоров В.А. Импульсная индуктивная электроразведка - М., Недра, 1985 г. с. 14).

Заявляемый способ импульсной индуктивной геоэлектроразведки включает размещение генераторного и измерительного контуров на земной поверхности над исследуемым геологическим объектом, периодическую подачу от импульсного генератора импульсов тока на вход генераторного контура и периодически, в паузах между импульсами, регистрацию наведенной ЭДС в измерительном контуре. Перед измерением производят предварительную установку длительности импульсов генерируемого тока, во время измерений осуществляют измерение величины импульса генерируемого тока и регистрацию отношения значения наведенной ЭДС к измеренной величине генерируемого тока, накопление во времени указанных отношений и расчет среднего значения указанного отношения по количеству точек, выбранных на кривой спада измеряемого сигнала.

При этом программно задают величину шага дискретизации на кривой спада не менее одной микросекунды, для каждой выбранной точки регистрируют среднее значение отношения наведенной ЭДС к измеренной величине генерируемого тока по результатам 2n измерений, где n выбирают от 0 до 8.

Число n выбирают в зависимости от намеченной точности измерения, которую необходимо достичь. Чем больше n, тем точнее будет результат измерений.

Способ предусматривает возможность интегрирования отношений наведенной ЭДС к измеренной величине генерируемого тока для каждого значения времени на кривой спада на поздних временах путем расчета средней величины указанного отношения в окрестностях выбранного значения времени по результатам 2n дополнительных дискретных измерений с шагом от 1 микросек до 4,6 микросек, где n выбирают от 0 до 8.

Таким образом, на кривой спада на поздних временах дополнительно производят 2n измерений для более точного результата измеренного сигнала на измерительном контуре.

Диапазон времени регистрации измеряемых сигналов устанавливают от 3 микросек до 1000 милисек.

Реализация заявляемого способа осуществляется в процессе работы с предложенным устройством.

Устройство содержит генераторный 1 и измерительный 2 контуры, установленные на земной поверхности исследуемого геологического объекта, программируемый блок управления и регистрации измеренных сигналов - микропроцессор 3 с постоянно записывающим устройством - ПЗУ 4, измеритель сигналов, включающий каскад усилителей 5, коммутатор 6 и аналого-цифровой преобразователь - АЦП 7, силовой ключ 8 подачи импульсов генератора тока 9, при этом каскад усилителей 5, АЦП 7 и силовой ключ 8 снабжены индивидуальными блоками питания - аккумуляторами 10, 11, 12 соответственно. Микропроцессор 3 через порт соединения 13 соединен с компьютером 14. Поз. 15 - световое табло, поз. 16 - звуковое табло, отображающие результаты измерения. Поз. 17 - измеритель напряжения аккумулятора 12. Поз. 18 - блок измерения тока в генераторной петле (фиг. 1).

Отдельное питание, предусмотренное для силовой части (силовой ключ), аналоговой части (каскад усилителей), цифровой части (АЦП), позволяет исключить взаимное влияние узлов по питанию друг от друга, что положительно влияет на точность измерений.

В качестве программируемого блока управления и регистрации измеренных сигналов выбран высокопроизводительный с интегрированным блоком памяти микропроцессор фирмы Microchip, работающий на частоте 20 МГц.

В память программируемого блока управления и регистрации измеренных сигналов с постоянно записывающим устройством - микропроцессор единовременно записывают число измерений - 2n. Микропроцессор содержит ячейки памяти, вмещающие 96 измерений по всем точкам, выбранным на кривой спада по времени и дополнительным точкам, выбранным на поздних временах.

Микропроцессор 3 выдает команду на АЦП 7, которое выполняет 2n измерений, значения этих измерений накапливаются в памяти микропроцессора и по ним рассчитывается среднеарифметическое значение ЭДС по каждой выбранной точке на кривой спада. При этом в микропроцессор параллельно записываются значения генерируемого тока, измеренного блоком 18 в момент времени перед выключением тока (точка «В» импульса тока на фиг. 2) в генераторном контуре 1, что позволяет более точно измерить генерируемый ток. Указанный момент времени также установлен в памяти микропроцессора. После завершения цикла измерений из памяти микропроцессора полученные значения ЭДС и измеренного генерируемого тока заносятся в ПЗУ 4 и параллельно выдаются в порт 13 на компьютер 14. В компьютере с помощью программы производится определение отношений накопленных средних значений ЭДС к измеренному генерируемому току. Полученные результаты используют в соответствии с известной методикой для расчета проводимости геологического объекта в зависимости от глубины.

В составе микропроцессора 3 присутствует арифметическо-логическое устройство - АЛУ (интегратор), которое суммирует цифровые значения измеренного сигнала и вычисляет среднеарифметические значения в окрестностях каждой точки, которые передает в ПЗУ 4.

Кроме того, программа, заложенная в микропроцессоре, предусматривает возможность интегрирования отношений наведенной ЭДС к измеренной величине генерируемого тока для каждого значения времени на кривой спада на поздних временах путем расчета средней величины указанного отношения в окрестностях выбранного значения времени по результатам 2n измерений, где n выбирают от 0 до 8 дополнительных дискретных значений с шагом от 1 микросек до 4,6 микросек. Таким образом, на кривой спада на поздних временах дополнительно производят 2n измерений для более точного результата измеренного сигнала (фиг. 3).

За счет повышения достоверности измерений на поздних временах при использовании интегратора достигают увеличение глубинности измерений при неизменных размерах измерительного контура.

Похожие патенты RU2639558C2

название год авторы номер документа
СПОСОБ ЭЛЕКТРОМАГНИТНОЙ ДЕФЕКТОСКОПИИ В МНОГОКОЛОННЫХ СКВАЖИНАХ 2007
  • Наянзин Анатолий Николаевич
  • Потапов Александр Петрович
RU2364719C1
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Гуторов Юлий Андреевич
  • Коротченко Александр Григорьевич
  • Гимаев Ирек Ханифович
RU2560997C2
ЭЛЕКТРОМАГНИТНЫЙ СКВАЖИННЫЙ ДЕФЕКТОСКОП 2008
  • Наянзин Анатолий Николаевич
  • Потапов Александр Петрович
RU2372478C1
СКВАЖИННЫЙ МАГНИТНО-ИМУЛЬСНЫЙ ДЕФЕКТОСКОП-ТОЛЩИНОМЕТР 2006
  • Потапов Александр Петрович
  • Даниленко Виталий Никифорович
  • Наянзин Анатолий Николаевич
  • Шаров Анатолий Леонидович
  • Шамшин Виталий Иванович
RU2333461C1
Способ и устройство для электромагнитной дефектоскопии-толщинометрии ферромагнитных металлических труб в многоколонных скважинах 2022
  • Потапов Александр Петрович
  • Даниленко Виталий Никифорович
  • Даниленко Владислав Витальевич
  • Куйбышев Рустам Равилович
  • Шамшин Виталий Иванович
RU2783988C1
Комплексная аппаратура для исследования нефтегазовых скважин и способ регистрации полученных данных 2016
  • Борисов Виктор Иванович
  • Борисова Любовь Константиновна
  • Кондрашов Алексей Владимирович
  • Куйбышев Рустам Равилович
  • Крысов Александр Андреевич
  • Мамлеев Тагир Сахабович
  • Даниленко Виталий Никифорович
  • Даниленко Владислав Витальевич
  • Шамшин Виталий Иванович
  • Хан Сергей Александрович
  • Потапов Александр Петрович
RU2624144C1
СПОСОБ ИНДУКЦИОННОГО КАРОТАЖА СКВАЖИН В ПРОЦЕССЕ БУРЕНИЯ 2011
  • Потапов Александр Петрович
  • Судничников Виталий Григорьевич
  • Чупров Василий Прокопьевич
  • Бельков Алексей Викторович
  • Судничков Андрей Витальевич
RU2466431C1
Способ геоэлектроразведки (варианты) 2015
  • Каменецкий Феликс Моисеевич
  • Тригубович Георгий Михайлович
  • Чернышев Антон Владимирович
  • Филатов Владимир Викторович
RU2631532C2
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ 2012
  • Яхин Айрат Махмутович
  • Яхина Ирина Айратовна
RU2494419C1
СПОСОБ ЭЛЕКТРОРАЗВЕДКИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2007
  • Великин Александр Борисович
RU2354999C1

Иллюстрации к изобретению RU 2 639 558 C2

Реферат патента 2017 года Способ импульсной индуктивной геоэлектроразведки и устройство для его осуществления

Группа изобретений относится к области электроразведки, а именно к методам электромагнитного зондирования. Способ включает размещение генераторного и измерительного контуров, периодическую подачу от генератора импульсов тока на вход контура и периодически, в паузах между импульсами, регистрацию наведенной ЭДС в измерительном контуре, предварительную установку длительности импульсов генерируемого тока, измерение величины импульса тока и регистрацию отношения значения наведенной ЭДС к измеренной величине тока, накопление во времени указанных отношений и расчет среднего значения отношения по количеству точек, выбранных на кривой спада. Программно задают величину шага дискретизации на кривой спада не менее одной микросекунды, и для каждой выбранной точки регистрируют по результатам 2n измерений среднее значение отношения наведенной ЭДС к измеренной величине ГТ в момент времени перед выключением импульса этого тока, где n выбирают от 0 до 8. Устройство содержит световое и звуковое табло, аккумуляторы, микропроцессор, ПЗУ, порт для подключения к компьютеру, коммутатор, усилители, АЦП, генератор импульсов тока, измеритель напряжения на аккумуляторе, генераторный контур, измерительный контур, силовой ключ, блок измерения тока в генераторной петле. Технический результат - повышение точности и достоверности результатов измерений. 2 н. и 2 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 639 558 C2

1. Способ импульсной индуктивной геоэлектроразведки, включающий размещение генераторного и измерительного контуров на земной поверхности над исследуемым геологическим объектом, периодическую подачу от импульсного генератора импульсов тока на вход генераторного контура и периодически, в паузах между импульсами, регистрацию наведенной ЭДС в измерительном контуре, предварительную установку длительности импульсов генерируемого тока, измерение величины импульса генерируемого тока и регистрацию отношения значения наведенной ЭДС к измеренной величине генерируемого тока, накопление во времени указанных отношений и расчет среднего значения указанного отношения по количеству точек, выбранных на кривой спада измеряемого сигнала, отличающийся тем, что программно задают величину шага дискретизации на кривой спада не менее одной микросекунды, и для каждой выбранной точки регистрируют среднее значение отношения наведенной ЭДС к измеренной величине генерируемого тока по результатам 2n измерений, где n выбирают от 0 до 8.

2. Способ импульсной индуктивной геоэлектроразведки по п. 1, отличающийся тем, что интегрируют отношения наведенной ЭДС к измеренной величине генерируемого тока для каждого значения времени на кривой спада на поздних временах путем расчета средней величины указанного отношения в окрестностях выбранного значения времени по результатам 2n дополнительных дискретных измерений с шагом от 1 микросек до 4,6 микросек, где n выбирают от 0 до 8.

3. Способ импульсной индуктивной геоэлектроразведки по п. 1, отличающийся тем, что диапазон времени регистрации измеряемых сигналов устанавливают от 3 микросек до 1000 милисек.

4. Устройство импульсной индуктивной геоэлектроразведки, содержащее генератор импульсов тока, генераторный и измерительный контуры, установленные на земной поверхности исследуемого геологического объекта, программируемый блок управления и регистрации измеренных сигналов с постоянно записывающим устройством, измеритель сигналов, включающий каскад усилителей, коммутатор и аналого-цифровой преобразователь, силовой ключ подачи импульсов генератора, отличающееся тем, что каскад усилителей, аналого-цифровой преобразователь и силовой ключ снабжены индивидуальными блоками питания.

Документы, цитированные в отчете о поиске Патент 2017 года RU2639558C2

УСТРОЙСТВО ДЛЯ ГЕОЭЛЕКТРОЗОНДИРОВАНИЙ 1989
  • Барсуков П.О.
  • Харитонов А.В.
  • Сурков Г.Д.
SU1637547A1
СПОСОБ ТЕСТИРОВАНИЯ АППАРАТУРЫ ИМПУЛЬСНОЙ ЭЛЕКТРОРАЗВЕДКИ И СРЕДСТВ ОБРАБОТКИ ИЗМЕРЕННЫХ ДАННЫХ В ПОЛЕВЫХ УСЛОВИЯХ 2011
  • Плотников Андрей Евгеньевич
RU2482520C2
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ (ВАРИАНТЫ) 2003
  • Рыхлинский Н.И.
  • Легейдо П.Ю.
  • Давыдычева С.Н.
  • Мандельбаум М.М.
  • Рыхлинская Е.Н.
RU2231089C1
US 4033186 A1, 05.07.1977
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1991
  • Балашов Б.П.
  • Саченко Г.В.
  • Секачев М.Ю.
  • Цыплящук А.И.
RU2006886C1
СПОСОБ ПРЯМЫХ ПОИСКОВ ГЕОЛОГИЧЕСКИХ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1992
  • Могилатов Владимир Сергеевич
  • Балашов Борис Петрович
RU2028648C1
УСТРОЙСТВО ДЛЯ ЭЛЕКТРОМАГНИТНОГО КАРОТАЖА СКВАЖИН 2004
  • Петров Андрей Николаевич
  • Киселев Владимир Викторович
RU2292064C2
US 4849699 A1, 18.07.1989.

RU 2 639 558 C2

Авторы

Степанов Станислав Владимирович

Судничников Андрей Витальевич

Мифтахов Микрон Гилмуллович

Епископосов Карен Саркисович

Шамшин Виталий Иванович

Хан Сергей Александрович

Даниленко Виталий Никифорович

Мамлеев Тагир Сахабович

Даты

2017-12-21Публикация

2016-05-11Подача