Предлагаемое изобретение относится к лазерной технике и может быть использовано при разработке лазеров с пассивной синхронизацией мод, с высокой энергией выходных световых импульсов, применяемых при зондировании атмосферы, локации, прецизионной обработке материалов, создании сверхсильных световых полей, исследовании быстропротекающих процессов в физике, химии, биологии и т.д.
Известен волоконный лазер для генерации высокоэнергетических световых импульсов (S.M. Kobtsev, S.V. Kukarin, S.V. Smirnov, and Y.S. Fedotov, "High-energy mode-locked all-fiber laser with ultralong resonator", Laser Physics. 20, №2, pp. 351-356, 2010). Указанный лазер с энергией импульсов излучения около 4 мкДж, при их длительности ~10 нс, состоит из источника накачки и волоконного кольцевого резонатора, включающего активное волокно длиной ~10 м, служащее для усиления лазерного излучения, и пассивное волокно длиной порядка нескольких километров, служащее для увеличения длины резонатора. Непрерывное излучение накачки, создающее в активном волокне инверсную заселенность, вводится в резонатор через ответвитель ввода излучения, выход которого соединен с входом активного волокна. Имеется также ответвитель вывода генерируемого излучения, соединенный своим входом с выходом волоконного кольцевого резонатора. В разрыв волоконного кольцевого резонатора помещается устройство нелинейных потерь, которое приводит к формированию импульса излучения. Уменьшение частоты следования импульсов в выходном излучении, обусловленное более длинным волоконным кольцевым резонатором, приводит к увеличению их энергии при неизменной средней мощности лазера.
Однако указанный волоконный лазер обладает генерационной особенностью, связанной с потерей устойчивости одноимпульсного режима пассивной синхронизации мод при достаточно больших длинах пассивного волокна. Возникающая неустойчивость проявляется в появлении в волоконном кольцевом резонаторе новых импульсов и в структурировании генерируемого импульса. Эта генерационная особенность приводит к ухудшению качества генерируемых импульсов и препятствует дальнейшему эффективному увеличению их энергии, что является недостатком указанного волоконного лазера. Появление новых импульсов и структурирование генерируемого импульса начинают проявляться при длительности пассивного волокна около 200 м и более.
Кроме того, известен волоконный лазер для генерации высокоэнергетических световых импульсов, являющийся прототипом предлагаемого изобретения (A. Hideur, Т. Chattier, М. Brunel, М. Salhi, С. , F. Sanchez, "Mode-lock, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser", Optics Communications. 198, pp. 141-146, 2001). Указанный лазер состоит из источника накачки и волоконного кольцевого резонатора длиной ~10 м, включающего в себя активное волокно, активированное иттербием, служащее для усиления лазерного излучения, и устройство нелинейных потерь, обеспечивающее работу лазера в режиме регулярных незатухающих пичков. Непрерывное излучение источника накачки, создающее в активном волокне инверсную заселенность, вводится в резонатор через специальную систему ввода. Имеется также система вывода части генерируемого излучения из резонатора. Нелинейные потери, создаваемые устройством нелинейных потерь, приводят к неустойчивости режима непрерывной генерации и реализации режима регулярных незатухающих пичков. Выходное излучение лазера представляет собой регулярную последовательность импульсов. Длительность импульса ~1 мкс, энергия импульса ~5 мкДж, расстояние между соседними импульсами ~8.3 мкс.
Однако указанный волоконный лазер, работающий в режиме регулярных незатухающих пичков, а не в режиме пассивной синхронизации мод, обладает недостатком, связанным с тем, что каждый генерируемый пичок формируется из начального затравочного поля, роль которого играет внутрирезонаторное спонтанное излучение (Я.И. Ханин, "Основы динамики лазеров", Раздел 3.2.3. - М.: Наука, Физматлит. 368 с. 1999; A. Komarov, Н. Leblond, F. Sanchez, "Theoretical analysis of the operating regime of a passively mode-locked fiber laser through nonlinear polarization rotation", Phys. Rev. A. 72, pp. 063811(7), 2005), в результате чего в каждом импульсе выходного цуга возникает своя, не зависящая от предыстории, случайная, невоспроизводимая пространственно-временная структура поля. Такая стохастизация генерируемых импульсов вызвана стохастичностью внутрирезонаторного спонтанного излучения, являющегося начальным затравочным полем, из которого формируется каждый пичок. Как следствие, эти импульсы не являются стабильными и воспроизводимыми.
Задачей (техническим результатом) предлагаемого изобретения является получение стабильных и воспроизводимых высокоэнергетических импульсов света.
Поставленная задача решается посредством того, что в волоконный лазер для генерации высокоэнергетических световых импульсов, содержащий источник накачки, ответвитель ввода излучения накачки, волоконный кольцевой резонатор длиной ~10 м, включающий в себя активное волокно, устройство нелинейных потерь и ответвитель вывода генерируемого излучения из кольцевого резонатора, введены пассивное волокно определенной длины, дополнительный ответвитель вывода излучения из волоконного кольцевого резонатора, дополнительный ответвитель ввода излучения в волоконный кольцевой резонатор, при этом пассивное волокно одним из своих концов соединено с дополнительным ответвителем вывода излучения из волоконного кольцевого резонатора, а другим своим концом соединено с дополнительным ответвителем ввода излучения в волоконный кольцевой резонатор.
На чертеже приведена структурная схема предлагаемого волоконного лазера для генерации высокоэнергетических световых импульсов света.
Предлагаемый волоконный лазер для генерации высокоэнергетических световых импульсов содержит источник накачки 1 ИН, ответвитель ввода излучения накачки 2, волоконный кольцевой резонатор длиной ~10 м, включающий в себя активное волокно 3, устройство нелинейных потерь 4 УНП и ответвитель вывода генерируемого излучения из кольцевого резонатора 5, а также дополнительный ответвитель 6 вывода генерируемого излучения из волоконного кольцевого резонатора, пассивное волокно определенной длины 7, дополнительный ответвитель 8 ввода излучения в волоконный кольцевой резонатор.
При этом источник накачки 1 ИН соединен с одним из концов ответвителя ввода излучения накачки 2, другой конец которого соединен с волоконным кольцевым резонатором длиной ~10 м, который включает в себя активное волокно 3, устройство нелинейных потерь 4 УНП и ответвитель вывода генерируемого излучения из кольцевого резонатора 5, причем пассивное волокно 7 одним из своих концов соединено с дополнительным ответвителем 6 вывода излучения из волоконного кольцевого резонатора, а другим своим концом соединено с дополнительным ответвителем 8 ввода излучения в волоконный кольцевой резонатор.
Предлагаемый волоконный лазер работает следующим образом. В кольцевом резонаторе, содержащем активное волокно 3, активированное ионами редкоземельных металлов, служащее в качестве усилителя, и устройство нелинейных потерь 4 УНП, формируется излучение в виде регулярных незатухающих пичков. Часть излучения каждого такого пичка через дополнительный ответвитель 6 вывода генерируемого излучения из волоконного кольцевого резонатора направляется в пассивное волокно 7 и затем через дополнительный ответвитель 8 ввода излучения в волоконный кольцевой резонатор вновь попадает в волоконный кольцевой резонатор, содержащий активное волокно 3. Длина пассивного волокна подбирается такой, чтобы время прохождения импульса по нему совпадало бы с временным интервалом между соседними пичками, генерируемыми в волоконном кольцевом резонаторе, и соответственно, определяется по формуле:
L=T⋅υ,
где Т - временной интервал между соседними пичками, являющийся характеристикой волоконного лазера, работающего в режиме регулярных незатухающих пичков, и определяющийся стандартными методами измерений,
υ=2⋅108 м/с - скорость распространения света в волокне.
В результате, каждый последующий пичок в волоконном кольцевом резонаторе будет рождаться из затравочного излучения предыдущего пичка (доля излучения, возвращаемого через пассивное волокно в волоконный кольцевой резонатор, содержащий активное волокно 3, должна быть такой, чтобы влияние стохастического спонтанного излучения на формирование очередного пичка было пренебрежимо малым). Возникающая таким образом преемственность характеристик каждого последующего и предыдущего пичков обеспечивает режим пассивной синхронизации мод в предлагаемом лазере и устраняет стохастизацию формируемых импульсов, связанную со спонтанным излучением, то есть обеспечивает воспроизводимость и стабильность генерируемых высокоэнергетических импульсов света. Отметим, что для параметров лазера, являющегося прототипом предлагаемому волоконному лазеру для генерации высокоэнергетических световых импульсов, длина L пассивного волокна 7 должна составлять величину около 1.66 км, найденную по формуле L=T⋅υ, где временной интервал между соседними пичками Т=8.3 мкс. Поскольку временной интервал Т между соседними пичками зависит от мощности накачки, то, меняя эту мощность, можно прецизионно согласовывать межпичковый интервал с временем прохода импульса по пассивному волокну 7. В предложенном волоконном лазере для генерации высокоэнергетических световых импульсов реализуется гибридизация режима регулярных незатухающих пичков и режима пассивной синхронизации лазерных мод.
В случае использования сверхдлинных кольцевых резонаторов для генерации высокоэнергетических световых импульсов (см. работу: S.M. Kobtsev, S.V. Kukarin, S.V. Smirnov, and Y.S. Fedotov, "High-energy mode-locked all-fiber laser with ultralong resonator", Laser Physics. 20, №2, pp. 351-356, 2010), по протяженному пассивному волокну распространяется высокоэнергетический генерируемый импульс, что приводит к значительным нелинейным эффектам, способствующим фрагментации формируемого импульса, ухудшающей его качество. В предлагаемом варианте волоконного лазера для генерации высокоэнергетических световых импульсов, по пассивному волокну 7 распространяется импульс с существенно меньшей интенсивностью, что исключает проявление этих нелинейных эффектов. Нелинейный механизм формирования световых импульсов, в предлагаемом волоконном лазере для генерации высокоэнергетических световых импульсов, существенным образом связан с насыщением усиления. При этом для параметров волоконного лазера, являющегося прототипом данного устройства, энергия отдельного импульса равна энергии отдельного генерируемого пичка и составляет величину ~5 мкДж. Кроме того, в предлагаемом волоконном лазере для генерации высокоэнергетических световых импульсов имеются значительные потенциальные возможности для дальнейшего увеличения энергии генерируемых импульсов при сохранении их стабильности и воспроизводимости. Так при переходе от режима регулярных незатухающих пичков к режиму регулярных гигантских импульсов энергия генерируемых импульсов может быть значительно увеличена.
Таким образом, посредством использования в волоконном лазере для генерации высокоэнергетических световых импульсов, работающем в режиме регулярных незатухающих пичков, вывода через дополнительный ответвитель 6 вывода генерируемого излучения из волоконного кольцевого резонатора определенной части генерируемого излучения и пропускания его через пассивное волокно 7 с временем прохождения импульса по нему, совпадающим с временным интервалом между соседними пичками, с последующей подачей этого излучения в волоконный кольцевой резонатор через дополнительный ответвитель 8 ввода излучения в волоконный кольцевой резонатор, достигается формирование стабильных и воспроизводимых высокоэнергетических импульсов света.
название | год | авторы | номер документа |
---|---|---|---|
ВОЛОКОННЫЙ ЛАЗЕР ДЛЯ ГЕНЕРАЦИИ СВЕТОВЫХ ИМПУЛЬСОВ | 2013 |
|
RU2540936C1 |
Волоконный импульсный лазер с нелинейным петлевым зеркалом | 2015 |
|
RU2618605C1 |
Волоконный задающий генератор | 2016 |
|
RU2633285C1 |
ИМПУЛЬСНЫЙ ВОЛОКОННЫЙ ЛАЗЕР С ВАРЬИРУЕМОЙ КОНФИГУРАЦИЕЙ ПОДДЕРЖИВАЮЩЕГО ПОЛЯРИЗАЦИЮ ИЗЛУЧЕНИЯ КОЛЬЦЕВОГО РЕЗОНАТОРА | 2013 |
|
RU2547343C1 |
РАМАНОВСКИЙ ВОЛОКОННЫЙ ИМПУЛЬСНЫЙ ЛАЗЕР | 2013 |
|
RU2548394C1 |
Способ устойчивой автогенерации ультракоротких лазерных импульсов в поддерживающем состояние поляризации волоконном кольцевом резонаторе и лазер на его основе | 2020 |
|
RU2747724C1 |
ВОЛОКОННЫЙ ИМПУЛЬСНЫЙ КОЛЬЦЕВОЙ ЛАЗЕР С ПАССИВНОЙ СИНХРОНИЗАЦИЕЙ МОД ИЗЛУЧЕНИЯ (ВАРИАНТЫ) | 2014 |
|
RU2564519C2 |
ЦЕЛЬНО-ВОЛОКОННАЯ ЛАЗЕРНАЯ СИСТЕМА И СПОСОБ АВТОГЕНЕРАЦИИ ЛАЗЕРНЫХ ИМПУЛЬСОВ | 2013 |
|
RU2548940C1 |
Способ управления количеством связанных солитонов в фемтосекундном волоконном лазере | 2020 |
|
RU2764384C1 |
СПОСОБ ПАССИВНОЙ СИНХРОНИЗАЦИИ МОД ИЗЛУЧЕНИЯ В ЛАЗЕРЕ СВЕРХКОРОТКИХ ИМПУЛЬСОВ С ЦЕЛЬНОВОЛОКОННЫМ ОПТИЧЕСКИМ РЕЗОНАТОРОМ | 2013 |
|
RU2560750C2 |
Изобретение относится к лазерной технике. Волоконный лазер для генерации высокоэнергетических световых импульсов содержит источник накачки, ответвитель ввода излучения накачки, волоконный кольцевой резонатор длиной ~10 м, включающий в себя активное волокно, устройство нелинейных потерь и ответвитель вывода генерируемого излучения из кольцевого резонатора. В лазер введены дополнительный ответвитель вывода генерируемого излучения из волоконного кольцевого резонатора, пассивное волокно, дополнительный ответвитель ввода излучения в волоконный кольцевой резонатор. Источник накачки соединен с одним из концов ответвителя ввода излучения накачки, другой конец которого соединен с волоконным кольцевым резонатором. Пассивное волокно одним из своих концов соединено с дополнительным ответвителем вывода излучения из волоконного кольцевого резонатора, а другим своим концом соединено с дополнительным ответвителем ввода излучения в волоконный кольцевой резонатор. При этом длина пассивного волокна определяется по формуле: L=T⋅υ, где Т - временной интервал между соседними пичками, υ - скорость распространения света в волокне. Технический результат заключается в обеспечении возможности получения стабильных и воспроизводимых высокоэнергетических импульсов света. 1 ил.
Волоконный лазер для генерации высокоэнергетических световых импульсов, содержащий источник накачки, ответвитель ввода излучения накачки, волоконный кольцевой резонатор длиной ~10 м, включающий в себя активное волокно, устройство нелинейных потерь и ответвитель вывода генерируемого излучения из кольцевого резонатора, отличающийся тем, что в него введены дополнительный ответвитель вывода генерируемого излучения из волоконного кольцевого резонатора, пассивное волокно, дополнительный ответвитель ввода излучения в волоконный кольцевой резонатор, причем источник накачки соединен с одним из концов ответвителя ввода излучения накачки, другой конец которого соединен с волоконным кольцевым резонатором, а пассивное волокно одним из своих концов соединено с дополнительным ответвителем вывода излучения из волоконного кольцевого резонатора, а другим своим концом соединено с дополнительным ответвителем ввода излучения в волоконный кольцевой резонатор, при этом длина пассивного волокна определяется по формуле:
L=T⋅υ,
где Т - временной интервал между соседними пичками,
υ - скорость распространения света в волокне.
Машина для мытья столовой посуды | 1961 |
|
SU139786A1 |
WO 2016054009 A1, 07.04.2016 | |||
Масло для автоматических передач автомобилей | 1958 |
|
SU119946A1 |
US 20110075686 A1, 31.03.2011. |
Авторы
Даты
2018-03-05—Публикация
2016-05-18—Подача