РАДИАЛЬНО-ПОРШНЕВОЙ НАСОС С СОЕДИНИТЕЛЬНЫМ КОЛЬЦОМ Российский патент 2018 года по МПК F04B1/04 F04B1/53 F04B15/08 

Описание патента на изобретение RU2646519C1

Изобретение относится к насосостроению, в частности к радиально-поршневым насосам.

Известен радиально-поршневой насос [патент DE 19920997], который имеет эксцентриковый вал, расположенный в корпусе для приведения в движение насосных агрегатов, так что жидкость всасывается в цилиндровое пространство каждого насосного агрегата посредством всасывающего клапана и под давлением с помощью нагнетательного клапана выбрасывается в систему напорных каналов. Напорные каналы расположены в радиальной области корпуса насоса, ограничивающей насосные агрегаты. Они расположены тангенциально относительно эксцентрикового вала. Выходы каждого насосного агрегата соединены с напорным каналом через соединительную камеру.

Наиболее близким к предлагаемому является радиально-поршневой насос [патент на изобретение US 5647729], в котором эксцентричная часть ротора воздействует на поршни для выполнения возвратно-поступательного движения внутри радиальных цилиндров в корпусе насоса. Цилиндры соединены с резервуаром жидкости, а их радиальные наружные концы содержат нагнетательные клапаны и соединены по окружности нагнетательным каналом с выходным отверстием. Нагнетательные клапаны утоплены в посадочные места с помощью одного общего упругого кольцевого элемента, который расположен внутри указанного окружного нагнетательного канала. Поршни имеют головку, одна часть которой контактирует с эксцентричной частью ротора, а противоположная - с соединительным кольцом, которое обеспечивает постоянный контакт между ротором и цилиндрами.

Известное решение имеет следующий недостаток. Ввиду постоянного контакта между головкой поршня и соединительным кольцом создается фрикционный контакт, который либо заставляет поршни вращаться вокруг своей оси, либо повышает температуру самого насоса и перекачиваемой жидкости. Кроме того, за счет указанного недостатка снижается КПД насоса ввиду возрастающих потерь мощности на трение. Также за счет расположения соединительного кольца с одной стороны поршня при работе насоса возникают силы, линии действия которых направлены перпендикулярно оси цилиндра и которые создают помехи при движении поршней.

Технической задачей является снижение потерь на трение между соединительным кольцом и головками цилиндров, а также между поршнями и цилиндрами, что позволит применять такой насос с жидкостями, для которых недопустимо значительное повышение температуры при прохождении через насос (например, сжиженные газы).

Техническая задача решается тем, что на поверхности соединительного кольца, обращенной к головкам поршней, расположена прокладка из антифрикционного материала, повторяющая профиль соединительного кольца. Такая вставка может быть выполнена из фторопластовой композиции Ф4К20, предназначенной для работы в условиях сухого трения в широком диапазоне температур от -250 до +260°C. Кроме того, соединительных колец может быть два, расположенных симметрично относительно оси поршня.

Предлагаемое решение поясняется следующими фигурами.

На фиг. 1 представлен фрагмент продольного разреза насоса с одним соединительным кольцом.

На фиг. 2 представлен поперечный разрез насоса.

На фиг. 3 представлен вариант исполнения головки поршня.

На фиг. 4 представлен фрагмент продольного разреза насоса с двумя соединительными кольцами.

Радиально-поршневой насос состоит из кожуха 1, расположенного вокруг корпуса 2, содержащего цилиндры 3, в которых установлены поршни 4 с возможностью возвратно-поступательного движения. Корпус насоса 2 ограничивает центральное пространство 5, в котором размещается эксцентричная часть 6 ротора 7, а также головки 8 радиальных поршней 4. Один конец (то есть левый конец, как показано на фиг.1) центрального пространства 5 закрыт крышкой 9, и на некотором расстоянии от последней внутри корпуса насоса 2 предусмотрены подшипники 10. Перекачиваемая жидкость может через всасывающие отверстия 11 попадать в каждый из цилиндров 3. Радиальные наружные концы цилиндров 3 сливаются в кольцевой канал 12, который предусмотрен на внешней стенке корпуса насоса 2. На периферии эксцентричной части 6 ротора 7 установлен подшипник скольжения в виде кольца 13. В то время как ротор 7 вращается, кольцо 13 может оставаться неподвижным по отношению к эксцентриковой части 6, таким образом, что оно будет просто выполнять поступательное движение относительно корпуса насоса 2. Поршни 4 своими головками 8 контактируют с кольцом 13 и при вращении ротора 7 совершают возвратно-поступательное движение внутри соответствующих цилиндров 3.

Для выполнения хода всасывания поршни 4 должны не терять контакт с кольцом 13 эксцентричной части ротора 6, что достигается с помощью, по крайней мере, одного свободно смонтированного на эксцентричной части 6 соединительного кольца 14, содержащего прокладку 15, внешняя часть фигурного участка 16 которой находится в контакте с обращенной наружу торцевой поверхностью головок 8 и, таким образом, удерживает указанные головки в контакте с кольцом 13 эксцентричной части ротора 6. При этом внутренняя часть прокладки 15 повторяет форму обращенной к ней внутренней части соединительного кольца 14, а внешняя часть прокладки 15 является эквидистантой для внутренней. Толщина прокладки 15 подбирается таким образом, чтобы проекция внутренней части фигурного участка 17 соединительного кольца 14 частично накладывалась на соответствующую торцевую поверхность головки 8 (согласно фиг.1, 3, 4 упомянутая проекция является вертикальной). Прокладка 15 может быть изготовлена из прочного антифрикционного материала, способного работать в широком диапазоне температур, например из фторопластовой композиции Ф4К20, предназначенной для работы в условиях сухого трения в диапазоне температур от -250 до +260°C. Соединительное кольцо 14 обеспечивает жесткость контакта с головкой 8.

От кольцевого канала 12 отходит нагнетательный канал 18, через который осуществляется подача перекачиваемой жидкости. Всасывающие отверстия 11 и нагнетательный канал 18 снабжены обратными клапанами, контролирующими направление потока жидкости.

Обращенная внутрь торцевая поверхностью головок 8 может иметь как сферическую, так и цилиндрическую форму, а обращенная наружу торцевая поверхность головок 8 по существу имеет форму, ответную для фигурного участка 16 прокладки 15.

Соединительных колец 14 с прокладками 15 может быть два, и смонтированы на эксцентричной части 6 они будут симметрично относительно поршней 4, чтобы уменьшить воздействие нежелательных поперечных сил, воздействующих на поршень 4 при его возвратно-поступательном движении.

Устройство работает следующим образом.

При вращении ротора 7 его эксцентричная часть 6 заставляет перемещаться кольцо 13, которое в свою очередь толкает поршни 4, заставляя их совершать поступательное движение внутри соответствующих цилиндров 3 от центра насоса. В этот момент происходит процесс нагнетания перекачиваемой жидкости из цилиндра 3 через кольцевой канал 12 в нагнетательный канал 18. При прохождении нижней мертвой точки контакта поршня 4 с кольцом 13 поршень 4 начинает совершать возвратное движение из-за контакта наружного торца его головки 8 с соединительным кольцом 14 через прокладку 15. В этот момент происходит процесс всасывания перекачиваемой жидкости через всасывающее отверстие 11 в цилиндр 3. Сферическая или цилиндрическая поверхность внутреннего торца головки 8 обеспечит равномерный ее контакт с кольцом 13.

Техническим результатом являются повышение КПД насоса и расширение перечня перекачиваемых жидкостей.

Похожие патенты RU2646519C1

название год авторы номер документа
РАДИАЛЬНО-ПОРШНЕВОЙ НАСОС С НАПРАВЛЯЮЩИМИ ДИСКАМИ 2016
  • Королев Сергей Владимирович
  • Трепов Василий Васильевич
  • Капинос Василий Григорьевич
  • Колбасов Алексей Владимирович
  • Куленко Александр Петрович
RU2647160C1
ПОРШНЕВОЙ КРИОГЕННЫЙ НАСОС 2017
  • Королев Сергей Владимирович
  • Трепов Василий Васильевич
  • Капинос Василий Григорьевич
  • Колбасов Алексей Владимирович
  • Куленко Александр Петрович
RU2684739C2
РОТОРНО-ПОРШНЕВОЙ НАСОС-КОМПРЕССОР 1993
  • Чикин Г.Г.
RU2096662C1
Поршневая машина 1983
  • Гуйдо Обердорфер
SU1347871A3
РОТОРНО-ПОРШНЕВОЙ НАСОС (ВАРИАНТЫ) 1998
  • Грайфер В.И.
  • Чернуха Н.И.
  • Черняев К.В.
  • Никифоров С.Н.
  • Лыкин М.С.
  • Айнетдинов Абдул-Кадерович
  • Максутов Р.А.
  • Зубаков В.В.
RU2136967C1
НАСОС БУРОВОЙ ТРЕХПОРШНЕВОЙ ОДНОСТОРОННЕГО ДЕЙСТВИЯ 2020
  • Прушак Виктор Яковлевич
  • Горюнович Андрей Андреевич
  • Коднянко Максим Юрьевич
RU2739103C1
Поршневая машина 1980
  • Бернард Фрей
SU1380617A3
РАДИАЛЬНО-ПОРШНЕВОЙ НАСОС С ЖЕСТКОЙ СВЯЗЬЮ ШАТУНА С ПОРШНЕМ 2015
  • Овандер Валерий Борисович
  • Володин Жорж Гавриилович
  • Волков Сергей Владимирович
RU2587732C1
Погружной диафрагменный электронасос 2022
  • Становской Виктор Владимирович
  • Казакявичюс Сергей Матвеевич
  • Шестаков Александр Александрович
  • Ежков Константин Олегович
RU2794677C1
ГИДРОМАШИНА 2003
  • Татевосян Р.А.
  • Егорова Е.В.
  • Чистяков К.Ю.
RU2241141C2

Иллюстрации к изобретению RU 2 646 519 C1

Реферат патента 2018 года РАДИАЛЬНО-ПОРШНЕВОЙ НАСОС С СОЕДИНИТЕЛЬНЫМ КОЛЬЦОМ

Изобретение относится к насосостроению, в частности к радиально-поршневым насосам. На поверхности соединительного кольца насоса, обращенной к головкам поршней, расположена прокладка из антифрикционного материала, повторяющая профиль соединительного кольца. Такая вставка может быть выполнена из фторопластовой композиции Ф4К20, предназначенной для работы в условиях сухого трения в широком диапазоне температур от -250 до +260°C. Техническим результатом являются повышение КПД насоса и расширение перечня перекачиваемых жидкостей. 6 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 646 519 C1

1. Радиально-поршневой насос, состоящий из кожуха, расположенного вокруг корпуса, содержащего цилиндры, в которых установлены поршни с возможностью возвратно-поступательного движения, корпус насоса ограничивает центральное пространство, в котором размещается эксцентричная часть ротора, а также головки поршней, один конец центрального пространства закрыт крышкой и на некотором расстоянии от последней внутри корпуса насоса предусмотрены подшипники, у цилиндров имеются всасывающие отверстия, а радиальные наружные концы цилиндров сливаются в кольцевой канал, который предусмотрен на внешней стенке корпуса насоса, на периферии эксцентричной части ротора установлен подшипник скольжения в виде кольца, с которым контактируют поршни своими головками, на эксцентричной части ротора расположено соединительное кольцо, от кольцевого канала отходит нагнетательный канал, причем всасывающие отверстия и нагнетательный канал снабжены обратными клапанами, отличающийся тем, что соединительное кольцо содержит прокладку, внешняя часть фигурного участка которой находится в контакте с обращенной наружу торцевой поверхностью головок поршней и, таким образом, удерживает указанные головки в контакте с кольцом эксцентричной части ротора.

2. Радиально-поршневой насос по п. 1, отличающийся тем, что на эксцентричной части ротора расположено еще одно соединительное кольцо.

3. Радиально-поршневой насос по п. 2, отличающийся тем, что внутренняя часть прокладки повторяет форму обращенной к ней внутренней части соединительного кольца, а внешняя часть прокладки является эквидистантой для внутренней.

4. Радиально-поршневой насос по п. 3, отличающийся тем, что толщина прокладки такова, что проекция внутренней части фигурного участка соединительного кольца частично накладывается на соответствующую торцевую поверхность головки поршня.

5. Радиально-поршневой насос по п. 4, отличающийся тем, что прокладка может быть изготовлена из прочного антифрикционного материала, способного работать в широком диапазоне температур.

6. Радиально-поршневой насос по п. 5, отличающийся тем, что прокладка может быть изготовлена из фторопластовой композиции Ф4К20.

7. Радиально-поршневой насос по любому из пп. 1-6, отличающийся тем, что обращенная внутрь торцевая поверхностью головок поршней может иметь как сферическую, так и цилиндрическую форму, а обращенная наружу торцевая поверхность головок по существу имеет форму, ответную для фигурного участка прокладки.

Документы, цитированные в отчете о поиске Патент 2018 года RU2646519C1

US 5647729 A, 15.07.1997
US 5509347 A1, 23.04.1886
DE 19920997 A1, 09.11.2000
US 4977606 A1, 11.12.1990.

RU 2 646 519 C1

Авторы

Королев Сергей Владимирович

Трепов Василий Васильевич

Капинос Василий Григорьевич

Колбасов Алексей Владимирович

Куленко Александр Петрович

Даты

2018-03-05Публикация

2016-12-06Подача