Способ сжигания топлива Российский патент 2018 года по МПК F23C10/01 

Описание патента на изобретение RU2647744C1

Изобретение относится к способам сжигания газообразных жидких и твердых топлив для нагрева газов, жидкостей и твердых тел, а также обезвреживания газообразных, жидких и твердых отходов.

Известен способ сжигания топлив для нагрева рабочей среды путем подачи воздуха через газораспределительную решетку в псевдоожиженный слой твердого дисперсного теплоносителя с одновременным введением в последний топлива в соотношении α=1,0-1,1 и регулированием температуры слоя путем отвода из него тепла с помощью рабочей среды [Махорин К.Е., Тищенко А.Т. Высокотемпературные установки с кипящим слоем. - Киев: Техника, 1966. С. 36]. Недостатками известного способа является необходимость проведения процесса при высоких температурах (выше 800°С), определяемых скоростью горения топливно-воздушных смесей на поверхности частиц инертного теплоносителя. Для ввода аппарата в работу необходимо нагреть теплоноситель до 600-800°С с помощью дополнительного источника тепла, а для устойчивой работы аппарата температура должна поддерживаться на уровне 800-1000°С. Высокие температуры сжигания приводят к образованию термических оксидов азота по реакции: N2 + О2 ->> NOx. Связанные в топливе соединения азота в этом случае также окисляются до оксидов азота. Наблюдается также высокий выброс оксида углерода и органических соединений типа бензпиренов, особенно при сжигании твердых топлив.

Известен также способ сжигания топлив для нагрева рабочей среды путем подачи воздуха α = 1,0-1,1 через газораспределительную решетку в псевдоожиженный слой дисперсного катализатора полного окисления органических веществ с одновременным введением в последний топлива. Температура в слое поддерживается постоянной в интервале 300-800°С за счет изменения расхода рабочей среды [SU 826798, F23C 11/02, 30.05.1983]. Недостатком известного способа является использование катализатора как теплоносителя. Это приводит к его высоким загрузкам в реактор (высота слоя до 1.5 м) и, как следствие, большим расходам катализатора за счет его механического износа (0,3-0,5 об. % в сутки). При сжигании испаряющихся жидких топлив и отходов с высоким содержанием воды наблюдаются значительные температурные перепады на гранулах катализатора, достигающие 400-500°С, что приводит к дополнительному износу катализатора за счет раскола гранул. При высоком износе токсичные компоненты (хром, медь и др.), содержащиеся в катализаторе, могут вызывать вторичное загрязнение окружающей среды. Для ликвидации загрязнения требуется сложная система пылеочистки отходящих из реактора дымовых газов.

Наиболее близким способом сжигания топлив является известный способ, приведенный в патенте RU 2057988, F23C 11/2, 10.04.1996. Сжигание топлив проводят в псевдоожиженном слое, включающем катализатор полного окисления органических веществ, а количество инертного теплоносителя составляет 75-80% от общего объема смеси последнего и упомянутого катализатора. Это позволяет значительно снизить расход катализатора при сохранении преимуществ каталитического сжигания.

Недостатком известного способа является вынос частиц катализатора при истирании исходных частиц до размера менее чем 0.5 диаметра за счет возникновения крупных пузырей в псевдоожиженном слое.

Изобретение решает задачу повышения эффективности процесса сжигания топлива в псевдоожиженном слое.

Технический результат - снижение выброса из слоя мелких частиц катализатора и соответственно снижение расхода катализатора с сохранением эффективности каталитического сжигания.

Это достигается за счет применения импульсного режима псевдоожижения, при котором образуются более мелкие газовые пузыри, которые способствуют интенсивному перемешиванию частиц слоя с разным размером и уменьшению выброса мелких частиц.

Предложен способ сжигания топлива в псевдоожиженном слое, который заключается в подаче воздуха через газораспределительную решетку, поддержании температуры 700-750°С в слое, включающем катализатор полного окисления органических веществ, путем отвода тепла с помощью нагреваемой рабочей среды, включающей частицы инертного теплоносителя, количество которого составляет 75-80% общего объема смеси последнего и упомянутого катализатора, псевдоожижение слоя проводят в импульсном режиме.

Псевдоожижение слоя проводят в импульсном режиме при частоте импульсов потока воздуха более 25 Гц.

Сущность изобретения иллюстрируется следующими примерами.

Примеры 1-3 иллюстрируют прототип.

Пример 1

В реактор диаметром 80 мм загружают 0,5 л катализатора (25 об. %) с диаметром гранул 2-3 мм и 1,5 л гранул кварца с диаметром 1,6-1,9 мм. Под газораспределительную решетку подают воздух для псевдоожижения слоя катализатора и окисления топлива. Внешним электроподогревателем нагревают слой катализатора до 300-400°С. Затем шнековым дозатором в слой подают порошкообразный бурый уголь Канско-Ачинского месторождения в количестве 3,3-3,5 кг/ч. Температура в слое регулируется количеством воды, подаваемой на охлаждение в теплообменник, погруженный в слой катализатора, и поддерживается на уровне 700-750°С. Степень окисления угля 98.6%.

Количество оксида углерода в дымовых газах на выходе из реактора 0,11 об. %. Степень истирания катализатора 0,04 об.% в сутки с учетом выброса мелких частиц катализатора.

Пример 2

Аналогичен примеру 1. В реактор загружают 0,4 л катализатора (20% от общего объема смеси) и 1,6 л гранул кварца с диаметром 1,6-1,9 мм. Степень окисления угля 98,6%.

Количество оксида углерода в дымовых газах на выходе из реактора 0,12 об. % Степень истирания катализатора 0,03 об. % в сутки с учетом выброса мелких частиц катализатора.

Пример 3

Аналогичен примеру 1. В слой катализатора вместо угля подают модельную сточную воду, содержащую 20% дизельного топлива и 80% воды. Количество подаваемой сточной воды 2,5-3,0 л/ч. Степень окисления органических веществ 99,8%.

Количество оксида углерода в отходящих газах 0,16 об. %. Степень истирания катализатора 0,04 об. % в сутки.

Примеры 4-10 иллюстрируют предлагаемый способ.

Пример 4

В реактор диаметром 80 мм загружают 0,5 л катализатора (25 об. %) с диаметром гранул 2-3 мм и 1,5 л гранул кварца с диаметром 1,6-1,9 мм. Под газораспределительную решетку подают воздух для псевдоожижения слоя катализатора и окисления топлива. Внешним электроподогревателем нагревают слой катализатора до 300-400°С. Затем шнековым дозатором в слой подают порошкообразный бурый уголь Канско-Ачинского месторождения в количестве 3,3-3,5 кг/ч. Температура в слое регулируется количеством воды, подаваемой на охлаждение в теплообменник, погруженный в слой катализатора, и поддерживается на уровне 700-750°С.

Воздух на псевдоожижение частиц подают импульсами с частотой 25 Гц. Степень окисления угля 99,1%. Количество оксида углерода в дымовых газах на выходе из реактора 0,09 об. %. Степень истирания катализатора 0,026 об. % в сутки с учетом выброса мелких частиц катализатора.

Пример 5

Аналогичен примеру 4. Воздух на псевдоожижение частиц подают импульсами с частотой 50 Гц. Степень окисления угля 99,0%. Количество оксида углерода в дымовых газах на выходе из реактора 0,10 об. %. Степень истирания катализатора 0,027 об. % в сутки с учетом выброса мелких частиц катализатора.

Пример 6

Аналогичен примеру 4. Воздух на псевдоожижение частиц подают импульсами с частотой 100 Гц. Степень окисления угля 99,0%. Количество оксида углерода в дымовых газах на выходе из реактора 0,10 об. %. Степень истирания катализатора 0,028 об. % в сутки с учетом выброса мелких частиц катализатора.

Пример 7

Аналогичен примеру 4. В слой вместо угля подают дизельное топливо через форсунку в количестве 0,9 кг/ч. Степень окисления дизельного топлива 99,9%. Количество оксида углерода в дымовых газах 0,09 об. %. Степень истирания катализатора 0,025 об. % в сутки.

Пример 8

Аналогичен примеру 4. В слой вместо угля подают газообразный пропан в количестве 0,3 м3/ч. Степень окисления пропана 99,9%. Количество оксида углерода в дымовых газах 0,09 об. %. Степень истирания катализатора 0,025 об. % в сутки.

Пример 9

Аналогичен примеру 4. В слой вместо угля подают модельную сточную воду, содержащую 20% дизельного топлива и 80% воды. Количество оксида углерода в отходящей из реактора парогазовой смеси составляет 0,15 об. % Степень окисления органических веществ 99,8%. Степень истирания катализатора 0,038 об. % в сутки.

Пример 10

Аналогичен примеру 4. В слой вместо угля подают осадки сточных вод коммунального хозяйства в количестве 3,5-4,0 кг/ч. Количество оксида углерода в отходящей из реактора парогазовой смеси составляет 0,11 об. % Степень окисления органических веществ 99,8%. Степень истирания катализатора 0,027 об. % в сутки.

Таким образом, приведенные примеры показывают, что предлагаемый способ при снижении количества катализатора, загружаемого в реактор, в 4 раза при проведении процесса окисления топлив в импульсном режиме позволяет сохранить степень окисления топлив при дополнительном снижении степени истирания катализатора полного сгорания топлив по сравнению с прототипом.

Похожие патенты RU2647744C1

название год авторы номер документа
СПОСОБ СЖИГАНИЯ ТОПЛИВА 1992
  • Симонов А.Д.
  • Языков Н.А.
RU2057988C1
Способ сжигания топлива 2017
  • Языков Николай Алексеевич
  • Симонов Александр Дмитриевич
  • Дубинин Юрий Владимирович
  • Федоров Александр Викторович
  • Федоров Игорь Анатольевич
  • Яковлев Вадим Анатольевич
  • Пармон Валентин Николаевич
RU2649729C1
СПОСОБ ОСУЩЕСТВЛЕНИЯ ЭКЗОТЕРМИЧЕСКИХ РЕАКЦИЙ 1995
  • Языков Н.А.
  • Симонов А.Д.
  • Пармон В.Н.
RU2084761C1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И СПОСОБ КАТАЛИТИЧЕСКОГО СЖИГАНИЯ ТОПЛИВ В ПСЕВДООЖИЖЕННОМ СЛОЕ 2012
  • Симонов Александр Дмитриевич
  • Дубинин Юрий Владимирович
  • Языков Николай Алексеевич
  • Яковлев Вадим Анатольевич
  • Федоров Игорь Анатольевич
  • Пармон Валентин Николаевич
RU2496579C1
КАТАЛИТИЧЕСКИЙ РЕАКТОР ДЛЯ ПЕРЕРАБОТКИ ОСАДКОВ СТОЧНЫХ ВОД И СПОСОБ ИХ ПЕРЕРАБОТКИ (ВАРИАНТЫ) 2010
  • Симонов Александр Дмитриевич
  • Пармон Валентин Николаевич
  • Яковлев Вадим Анатольевич
  • Языков Николай Алексеевич
RU2456248C1
СПОСОБ СЖИГАНИЯ ТОПЛИВА 1999
  • Бакаев А.Я.
  • Симонов А.Д.
  • Пармон В.Н.
  • Макаренко М.Г.
  • Кильдяшев С.П.
  • Парфенов А.Н.
RU2146028C1
КАТАЛИТИЧЕСКИЙ РЕАКТОР ДЛЯ ПЕРЕРАБОТКИ ОСАДКОВ СТОЧНЫХ ВОД И СПОСОБ ИХ ПЕРЕРАБОТКИ (ВАРИАНТЫ) 2013
  • Симонов Александр Дмитриевич
  • Языков Николай Алексеевич
  • Пармон Валентин Николаевич
  • Дубинин Юрий Владимирович
  • Яковлев Вадим Анатольевич
  • Федоров Игорь Анатольевич
RU2536510C2
СПОСОБ РЕГУЛИРОВАНИЯ МОЩНОСТИ ТЕПЛОГЕНЕРАТОРА С ПСЕВДООЖИЖЕННЫМ СЛОЕМ 2010
  • Симонов Александр Дмитриевич
  • Афлятунов Александр Саитгалиевич
  • Пармон Валентин Николаевич
  • Федоров Игорь Анатольевич
  • Яковлев Вадим Анатольевич
  • Языков Николай Алексеевич
RU2451876C1
СПОСОБ ОБЕЗВРЕЖИВАНИЯ ОРГАНИЧЕСКИХ ОТХОДОВ И НЕФТИ 2013
  • Симонов Александр Дмитриевич
  • Языков Николай Алексеевич
  • Дубинин Юрий Владимирович
  • Яковлев Вадим Анатольевич
  • Пармон Валентин Николаевич
RU2527238C1
СПОСОБ КАТАЛИТИЧЕСКОЙ ПЕРЕРАБОТКИ ОСАДКОВ СТОЧНЫХ ВОД 2014
  • Симонов Александр Дмитриевич
  • Языков Николай Алексеевич
  • Яковлев Вадим Анатольевич
  • Пармон Валентин Николаевич
RU2568978C1

Реферат патента 2018 года Способ сжигания топлива

Изобретение относится к способам сжигания газообразных жидких и твердых топлив для нагрева газов, жидкостей и твердых тел, а также обезвреживания газообразных, жидких и твердых отходов. Способ сжигания топлива в псевдоожиженном слое заключается в подаче воздуха через газораспределительную решетку, поддержании температуры 700-750°С в слое, включающем катализатор полного окисления органических веществ, путем отвода тепла с помощью нагреваемой рабочей среды, включающей частицы инертного теплоносителя, количество которого составляет 75-80% общего объема смеси последнего и упомянутого катализатора, псевдоожижение слоя проводят в импульсном режиме при частоте импульсов потока воздуха более 25 Гц. Технический результат - снижение выброса из слоя мелких частиц катализатора и соответственно снижение расхода катализатора с сохранением эффективности каталитического сжигания. 1 з.п. ф-лы.

Формула изобретения RU 2 647 744 C1

1. Способ сжигания топлива в псевдоожиженном слое, заключающийся в подаче воздуха через газораспределительную решетку, поддержании температуры 700-750°С в слое, включающем катализатор полного окисления органических веществ, путем отвода тепла с помощью нагреваемой рабочей среды, включающей частицы инертного теплоносителя, количество которого составляет 75-80% общего объема смеси последнего и упомянутого катализатора, отличающийся тем, что псевдоожижение слоя проводят в импульсном режиме.

2. Способ по п. 1, отличающийся тем, что псевдоожижение слоя проводят в импульсном режиме при частоте импульсов потока воздуха более 25 Гц.

Документы, цитированные в отчете о поиске Патент 2018 года RU2647744C1

СПОСОБ СЖИГАНИЯ ТОПЛИВА 1992
  • Симонов А.Д.
  • Языков Н.А.
RU2057988C1
Способ сжигания топлива 1979
  • Боресков Г.К.
  • Левицкий Э.А.
SU826798A1
Способ работы топки с кипящим слоем 1979
  • Варламова Агнесса Евгеньевна
  • Штейнер Игорь Николаевич
  • Рассудов Николай Семенович
  • Юфа Михаил Семенович
SU861849A1
Топка с кипящим слоем 1989
  • Рассамакин Егор Иванович
  • Кац Александр Григорьевич
  • Короленко Геннадий Павлович
SU1765616A1
Способ сжигания топлива 1989
  • Рассамакин Егор Иванович
  • Кац Александр Григорьевич
  • Короленко Геннадий Павлович
SU1672115A1
Топка кипящего слоя 1980
  • Варламова Агнесса Евгеньевна
  • Цыганков Святослав Антонович
  • Малиновский Сигизмунд Викентьевич
  • Мацнев Вячеслав Владимирович
  • Рассудов Николай Семенович
  • Дорожков Алексей Александрович
SU964339A1
Топка с кипящим слоем 1988
  • Кузнецов Геннадий Федорович
  • Джундубаев Ахмет Курманбекович
  • Осинцев Владимир Валентинович
  • Елюхин Владимир Александрович
  • Аманалиев Норузбай Аманалиевич
SU1629692A1

RU 2 647 744 C1

Авторы

Симонов Александр Дмитриевич

Языков Николай Алексеевич

Дубинин Юрий Владимирович

Федоров Игорь Анатольевич

Яковлев Вадим Анатольевич

Даты

2018-03-19Публикация

2017-04-27Подача