Установка для гашения ракетного двигателя твердого топлива при испытаниях Российский патент 2018 года по МПК F02K9/96 

Описание патента на изобретение RU2647747C1

Изобретение относится к области ракетной техники, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей твердого топлива (РДТТ), и предназначено для гашения РДТТ при наземной отработке, в том числе удлиненных РДТТ сложной конфигурации корпуса.

В процессе отработки РДТТ возникает необходимость оценки состояния материальной части РДТТ путем дефектации ее после огневых стендовых испытаний (ОСИ). По результатам дефектации элементов РДТТ (корпуса камеры сгорания, сопла) определяются состояние теплозащитных покрытий, степень уноса, деструкции и разрушения материалов. Однако за период от окончания работы РДТТ до проведения дефектации материалы конструкции подвергаются дополнительным воздействиям, которые обусловлены догоранием остатков твердого топлива в камере сгорания, выравниванием температуры по толщине стенок, взаимодействием с атмосферным кислородом. Выделяемая в этот период теплота вызывает дополнительное коксование теплозащитных материалов, тепловое повреждение силовых элементов конструкции.

Описанные процессы приводят к ошибочной оценке результатов испытаний и надежности работы конструкции РДТТ, что, в свою очередь, может существенно повысить погрешности расчетов удельного импульса тяги, требуемых толщин стенок корпуса и его теплозащиты.

Наиболее эффективным средством фиксации состояния материальной части РДТТ после ОСИ является гашение, при котором происходит быстрое прекращение процессов горения в двигателе и устраняются или минимизируются эффекты последействия.

Известна установка для гашения РДТТ при испытаниях (см. патент РФ №2477810). Установка содержит источник хладагента, соединенное с ним через управляющий клапан устройство подачи хладагента в камеру сгорания.

Недостатком установки является подача хладагента в камеру сгорания через систему узла давления (через штуцер в донной части), использующегося для измерения давления в камере сгорания РДТТ, что изменяет штатную конструкцию РДТТ и является недопустимым при зачетных испытаниях.

Известны установки гашения (см. Конструкция и отработка РДТТ / Под редакцией A.M. Виницкого. – М.: Машиностроение, 1980. - Стр. 117), которые содержат устройства подачи воды компактной струей, например с помощью обычных брандспойтов. При этом хладагент (вода) подается со стороны сопла РДТТ.

В этом случае поверхность РДТТ охлаждается неравномерно, возможно механическое и термическое разрушение как теплоемких элементов сопла, так и деструктированных слоев теплозащитного покрытия из-за высокой кинетической энергии струи.

Известна также более совершенная установка для гашения ракетного двигателя твердого топлива при испытаниях, являющаяся ближайшим аналогом предлагаемого изобретения. Установка содержит полую штангу с форсункой, связанную с системой подачи охлаждающей жидкости телескопически сочлененными между собой полыми поршнями с коллекторами, форсунками и выполненными у днищ поршней радиальными каналами (см. патент РФ №2580239).

В процессе гашения происходит последовательная раздвижка полых поршней и создание нескольких зон распыления охладителя вдоль камеры сгорания РДТТ с целью охлаждения ее поверхности.

Следует отметить, что при ОСИ удлиненных РДТТ сложной конфигурации корпусов необходимо создавать дополнительные зоны распыления с соответствующими форсунками. Создание нескольких зон распыления, при ограниченном общем расходе в системе подачи охлаждающей жидкости, приводит к необходимости удаленного расположения форсунок друг от друга и уменьшения их количества в каждой из локальных зон распыления - равномерность охлаждения поверхности камеры сгорания РДТТ снижается.

Таким образом, в известной установке не представляется возможным проведение эффективного охлаждения удлиненных РДТТ сложной конфигурации корпусов и получение с требуемой точностью информации о состоянии материальной части и работоспособности РДТТ.

Технической задачей данного изобретения является повышение эффективности гашения с целью получения достоверной информации на момент окончания работы РДТТ о состоянии материальной части и работоспособности РДТТ, в том числе удлиненных РДТТ сложной конфигурации корпусов.

Технический результат достигается тем, что в установке для гашения ракетного двигателя твердого топлива при испытаниях, содержащей полую штангу с форсункой, связанную с системой подачи охлаждающей жидкости телескопически сочлененными между собой полыми поршнями с коллекторами, форсунками и выполненными у днищ полых поршней радиальными каналами, на полом поршне, расположенном в выдвинутом положении за соплом ракетного двигателя твердого топлива, соосно закреплена крыльчатка, а сочленение этого полого поршня со смежным полым поршнем, расположенным ближе к системе подачи охлаждающей жидкости, выполнено с зазором с возможностью вращения под действием возникающего на крыльчатке осевого момента вращения при ее обтекании паром охлаждающей жидкости в процессе гашения.

Закрепление на полом поршне, расположенном в выдвинутом положении за соплом ракетного двигателя твердого топлива, соосно крыльчатки, и выполнение сочленения этого полого поршня со смежным полым поршнем, расположенным ближе к системе подачи охлаждающей жидкости с зазором с возможностью вращения под действием возникающего на крыльчатке осевого момента вращения при ее обтекании паром охлаждающей жидкости в процессе гашения, обеспечивает осевое вращение штанги с форсунками и полых поршней с форсунками на этом подшипнике. В процессе вращения турбулентные зоны распыления охлаждающей жидкости охватывают большие охлаждаемые поверхности РДТТ, обеспечивая их равномерное охлаждение.

Разработанная совокупность существенных признаков предлагаемого технического решения является новой и позволяет получить требуемый технический результат.

На фиг. 1 показан общий вид установки гашения РДТТ перед ОСИ РДТТ. На фиг. 2 показан вид А фиг. 1. На фиг. 3 показан общий вид установки гашения РДТТ в раздвинутом положении при ОСИ РДТТ. На фиг. 4 показан вид Б фиг. 3. На фиг. 5 показано сечение А-А фиг. 4.

Установка для гашения РДТТ содержит полую штангу 1 с форсункой. Между полой штангой 1 с форсункой и системой 2 подачи охлаждающей жидкости размещены телескопически сочлененные между собой полые поршни 3, 4. На каждом поршне установлен коллектор 5, а у днища 6 поршня выполнены радиальные каналы 7. На коллекторах 5 поршней 3 установлены форсунки 8 с возможностью размещения при гашении в камере сгорания 9. На полом поршне 4, расположенном в выдвинутом положении за соплом 10, соосно закреплена крыльчатка 11. Сочленение этого полого поршня 4 с смежным полым поршнем 4, расположенным ближе к системе 2 подачи охлаждающей жидкости, выполнено с зазором 12 с возможностью вращения под действием возникающего на крыльчатке 11 осевого момента вращения при ее обтекании паром охлаждающей жидкости в процессе гашения. Зазор 12 образован, например, посадкой движения между сопрягаемыми цилиндрическими поверхностями полых поршней 4. Вдоль образующей сопрягаемой цилиндрической поверхности полого поршня 4, расположенного ближе к системе подачи охлаждающей жидкости, могут быть выполнены продольные каналы 13, соединяющие зазор 12 с коллектором 5.

Работа установки гашения заключается в следующем.

При работе РДТТ установка для гашения РДТТ находится вне зоны высокотемпературной газовой струи. По окончании работы РДТТ из системы 2 подачи охлаждающая жидкость (например, вода) под давлением поступает в полость первого полого поршня ряда телескопически сочлененных между собой полых поршней. Раздвижка полых поршней относительно друг друга происходит поочередно и обусловлена тем, что охлаждающая жидкость из каждого предыдущего поршня через полость коллектора 5 поступает в полость последующего поршня через радиальные каналы 7 только при крайнем выдвинутом положении предыдущего поршня. Так за полыми поршнями 4 выдвигаются полые поршни 3. Последней выдвигается полая штанга 1 с форсункой. В крайнем выдвинутом положении полых поршней 4 крыльчатка 11 располагается у среза сопла 10. Полые поршни 3 с форсунками 8 и штанга 1 с форсункой располагаются в камере сгорания 9. Соответственно, по мере выдвижения поршней и заполнения охлаждающей жидкостью коллекторов 5 начинают поочередно работать форсунки 8. При этом каждая из форсунок располагается в требуемой зоне распыления и обеспечивает необходимый расход охлаждающей жидкости. В самой камере сгорания 9 под действием высокой остаточной температуры происходит интенсивное испарение капель распыляемой охлаждающей жидкости. Пар охлаждающей жидкости, истекая из камеры сгорания 9 через сопло 10, оказывает газодинамическое воздействие на крыльчатку 11, создавая относительно ее продольной оси момент сил, вращающих крыльчатку 11 совместно с полым поршнем 4, на котором она закреплена, а также полыми поршнями 3 с форсунками 8 и штангой 1 с форсункой. От коллектора 5 охлаждающая жидкость по продольным каналам 13 дополнительно подается в зазор 12 для уменьшения трения при вращении. При этом продольное осевое усилие, действующее на крыльчатку 11 со стороны истекающего из камеры сгорания пара охлаждающей жидкости, уравновешивается результирующей силой давления охлаждающей жидкости, действующей на днище 6 полого поршня 4, на котором эта крыльчатка 11 закреплена.

За счет вращения распыленные струи охлаждающей жидкости на выходе из форсунок имеют дополнительные составляющие окружных скоростей, что обеспечивает отклонение результирующего вектора скорости и винтовое движение струй охлаждающей жидкости. Образующиеся турбулентные зоны распыления покрывают, в том числе, труднодоступные участки. Таким образом, обеспечивается равномерное охлаждение всей поверхности камеры сгорания удлиненного РДТТ сложной конфигурации корпуса.

Подача охлаждающей жидкости продолжается до снижения температуры камеры сгорания ниже температуры разложения связующих теплозащитного покрытия корпуса РДТТ (контролируется датчиками температуры на корпусе) или прекращением парообразования в камере сгорания (контролируется визуально по истечению пара).

В предлагаемой установке в качестве охлаждающей жидкости может использоваться вода, являющаяся эффективным, недорогим и общедоступным хладагентом.

Таким образом, предлагаемая установка позволяет получить эффективное гашение РДТТ за счет подачи жидкого охладителя через вращающиеся форсунки. Эффективное гашение обеспечивает получение достоверной информации о состоянии материальной части, в том числе удлиненных РДТТ сложной конфигурации корпуса.

Похожие патенты RU2647747C1

название год авторы номер документа
УСТАНОВКА ДЛЯ ГАШЕНИЯ РАКЕТНОГО ДВИГАТЕЛЯ ТВЕРДОГО ТОПЛИВА ПРИ ИСПЫТАНИЯХ 2015
  • Патрулин Сергей Владимирович
  • Назарцев Александр Александрович
  • Мосин Павел Сергеевич
RU2580239C1
УСТАНОВКА ДЛЯ ГАШЕНИЯ РАКЕТНОГО ДВИГАТЕЛЯ НА ТВЕРДОМ ТОПЛИВЕ ПРИ ИСПЫТАНИЯХ 2015
  • Соколовский Михаил Иванович
  • Патрулин Сергей Владимирович
  • Назарцев Александр Александрович
  • Безматерных Илья Александрович
RU2604471C1
УСТАНОВКА ДЛЯ ГАШЕНИЯ РАБОТАЮЩЕГО РАКЕТНОГО ДВИГАТЕЛЯ ТВЕРДОГО ТОПЛИВА ПРИ ИСПЫТАНИЯХ В ГАЗОДИНАМИЧЕСКОЙ ТРУБЕ 2014
  • Патрулин Сергей Владимирович
  • Назарцев Александр Александрович
RU2559903C1
УСТАНОВКА ДЛЯ ИСПЫТАНИЙ ВЫСОТНЫХ РАКЕТНЫХ ДВИГАТЕЛЕЙ НА ТВЕРДОМ ТОПЛИВЕ 2013
  • Минченков Александр Михайлович
  • Каримов Владислав Закирович
  • Патрулин Сергей Владимирович
RU2514326C1
Установка для гашения ракетного двигателя на твердом топливе при испытаниях 2016
  • Патрулин Сергей Владимирович
  • Назарцев Александр Александрович
  • Горшков Юрий Александрович
RU2620460C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 2010
  • Лянгузов Сергей Викторович
  • Лянгузова Лариса Владимировна
  • Налобин Михаил Алексеевич
RU2459103C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 2009
  • Лянгузов Сергей Викторович
  • Лянгузова Лариса Владимировна
  • Налобин Михаил Алексеевич
RU2397356C1
СПОСОБ ДОЖИГАНИЯ ПРОДУКТОВ НЕПОЛНОГО СГОРАНИЯ ПРИ УТИЛИЗАЦИИ РАКЕТНЫХ ДВИГАТЕЛЕЙ ТВЕРДОГО ТОПЛИВА 2004
  • Мелешко Владимир Юрьевич
  • Карелин Валерий Александрович
  • Наумов Петр Николаевич
RU2278987C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 1997
  • Соколовский М.И.
  • Гапаненко В.И.
  • Лянгузов С.В.
  • Огнев С.В.
  • Тодощенко А.И.
RU2134814C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 1995
  • Лянгузов С.В.
RU2100635C1

Иллюстрации к изобретению RU 2 647 747 C1

Реферат патента 2018 года Установка для гашения ракетного двигателя твердого топлива при испытаниях

Изобретение относится к области ракетной техники, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей твердого топлива (РДТТ), и предназначено для гашения РДТТ при наземной отработке, в том числе удлиненных РДТТ сложной конфигурации корпуса. Установка для гашения ракетного двигателя твердого топлива при испытаниях содержит полую штангу с форсункой, связанную с системой подачи охлаждающей жидкости телескопически сочлененными между собой полыми поршнями с коллекторами, форсунками и выполненными у днищ поршней радиальными каналами. На полом поршне, расположенном в выдвинутом положении за соплом ракетного двигателя твердого топлива, соосно закреплена крыльчатка, а сочленение этого полого поршня со смежным полым поршнем, расположенным ближе к системе подачи охлаждающей жидкости, выполнено с зазором с возможностью вращения под действием возникающего на крыльчатке осевого момента вращения при ее обтекании паром охлаждающей жидкости в процессе гашения. Изобретение позволяет обеспечить эффективное гашение РДТТ и получение достоверной информации о состоянии материальной части, в том числе удлиненных РДТТ сложной конфигурации корпуса. 5 ил.

Формула изобретения RU 2 647 747 C1

Установка для гашений ракетного двигателя твердого топлива при испытаниях, содержащая полую штангу с форсункой, связанную с системой подачи охлаждающей жидкости телескопически сочлененными между собой полыми поршнями с коллекторами, форсунками и выполненными у днищ поршней радиальными каналами, отличающаяся тем, что на полом поршне, расположенном в выдвинутом положении за соплом ракетного двигателя твердого топлива, соосно закреплена крыльчатка, а сочленение этого полого поршня со смежным полым поршнем, расположенным ближе к системе подачи охлаждающей жидкости, выполнено с зазором с возможностью вращения под действием возникающего на крыльчатке осевого момента вращения при ее обтекании паром охлаждающей жидкости в процессе гашения.

Документы, цитированные в отчете о поиске Патент 2018 года RU2647747C1

УСТАНОВКА ДЛЯ ГАШЕНИЯ РАКЕТНОГО ДВИГАТЕЛЯ ТВЕРДОГО ТОПЛИВА ПРИ ИСПЫТАНИЯХ 2015
  • Патрулин Сергей Владимирович
  • Назарцев Александр Александрович
  • Мосин Павел Сергеевич
RU2580239C1
СПОСОБ ГАШЕНИЯ РАБОТАЮЩЕГО РДТТ ПРИ ИСПЫТАНИЯХ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Литвинов Андрей Владимирович
  • Коваленко Геннадий Павлович
  • Клиновых Наталья Андреевна
  • Серов Лев Павлович
  • Вакуличев Владимир Тихонович
  • Петрусев Виктор Иванович
  • Евгеньев Алексей Майевич
  • Власова Людмила Владимировна
  • Беляков Владимир Сергеевич
RU2477810C1
УСТАНОВКА ДЛЯ ИСПЫТАНИЙ ВЫСОТНЫХ РАКЕТНЫХ ДВИГАТЕЛЕЙ НА ТВЕРДОМ ТОПЛИВЕ 2013
  • Минченков Александр Михайлович
  • Каримов Владислав Закирович
  • Патрулин Сергей Владимирович
RU2514326C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 2010
  • Лянгузов Сергей Викторович
  • Лянгузова Лариса Владимировна
  • Налобин Михаил Алексеевич
RU2459103C1
US 3340691 A, 12.09.1967.

RU 2 647 747 C1

Авторы

Патрулин Сергей Владимирович

Назарцев Александр Александрович

Мосин Павел Сергеевич

Даты

2018-03-19Публикация

2017-05-03Подача