СИСТЕМА И СПОСОБ ОТВОДА ТЕПЛА ОТ КОРПУСА ЯДЕРНОГО РЕАКТОРА Российский патент 2018 года по МПК G21C15/18 

Описание патента на изобретение RU2649417C1

[0001] Заявляемая группа изобретений относится к ядерной энергетике, в частности к средствам и методам отвода тепла от корпусов преимущественно водо-водяных реакторов большой мощности, и может быть использована в системах аварийного охлаждения корпуса реактора для удержания расплава активной зоны (кориума) в корпусе реактора.

[0002] После аварии на АЭС Фукусима-1 большое внимание конструкторов и разработчиков проектов АЭС уделяется обеспечению целостности барьеров безопасности в условиях тяжелых запроектных аварий.

[0003] Для уменьшения радиационных последствий запроектных аварий с плавлением активной зоны до безопасного уровня в современных проектах АЭС разрабатывают и реализуют технические средства управления тяжелыми авариями, обеспечивающие сохранение герметичности контейнмента и существенное ослабление выхода продуктов деления за его пределы.

[0004] В проектах современных АЭС с ВВЭР в качестве системы безопасности при тяжелых запроектных авариях используется концепция удержания расплава активной зоны с помощью устройства локализации расплава (УЛР), установленного в подреакторном пространстве, в качестве четвертого уровня эшелонированной защиты. Применение данного устройства ведет к значительному увеличению капитальных затрат на возведение энергоблока.

[0005] Альтернативная концепция состоит в удержании расплава кориума внутри корпуса реактора при пассивном охлаждении наружной поверхности корпуса в режиме естественной циркуляции охлаждающей воды с обеспечением докризисного режима кипения.

[0006] Впервые принцип удержания расплава в корпусе реактора был реализован применительно к АЭС «Ловииза» с реактором ВВЭР-440 при модернизации этого реактора. Применительно к кипящим реакторам данная концепция принята для реактора KARENA.

[0007] В России работы по обоснованию удержания расплава кориума в корпусе реактора начались в 1992 г. применительно к ВВЭР-640. Так же был разработан проект устройства наружного охлаждения корпуса реактора (УНОР) для модернизации ВВЭР-440 первого и второго блоков Кольской АЭС, а также 3-го и 4-го блоков Нововоронежской АЭС.

[0008] Обоснованный отказ от УЛР и внедрение концепции удержания расплава активной зоны в корпусе реактора приводит к уменьшению номенклатуры требуемого оборудования, снижению затрат на транспортировку и монтаж оборудования, уменьшению размеров контейнмента и, соответственно, снижению количества расходуемых бетона и металла, т.е. значительному снижению капитальных затрат при сооружении энергоблока.

[0009] Кроме того, это приводит к сокращению выброса продуктов деления в атмосферу контейнмента при тяжелой запроектной аварии и значительно снижает затраты на дальнейшую ликвидацию ее последствий. Использование концепции внешнего охлаждения корпуса способствует соблюдению рекомендаций МАГАТЭ и EUR по сохранению целостности корпуса реактора при тяжелых авариях.

[0010] Основным требованием к применению концепции удержания расплава в корпусе реактора является обеспечение пассивности образа функционирования системы для обеспечения работоспособности в режиме полного обесточивания станции. Вследствие этого работа существующих систем основана на пассивном охлаждении корпуса реактора в режиме естественной циркуляции охлаждающей воды, при обеспечении пузырькового кипения на поверхности корпуса реактора.

[0011] При охлаждении корпуса реактора критически важной проблемой является переход от пузырькового кипения в большом объеме к кризису теплообмена, что приводит к резкому ухудшению теплоотдачи от корпуса реактора и возможному пережогу теплопередающей поверхности. Поэтому отказ от УЛР и применение концепции удержания расплава в корпусе реактора с помощью системы, основанной на охлаждении корпуса реактора за счет кипения охлаждающей воды на поверхности корпуса реактора при естественной циркуляции охлаждающей воды, возможен только для реакторов малой и средней мощности.

[0012] Для исключения негативного влияния указанных факторов, т.е. для увеличения теплоотдачи от корпуса реактора при удержании кориума, в реакторах большой мощности предлагают применять системы аварийного отвода тепла от корпуса реактора, основанные на принудительной прокачке охлаждающей воды снаружи корпуса реактора с большей, чем при естественной циркуляции, скоростью.

[0013] Так известен способ расхолаживания водоохлаждаемого реактора посредством многофункциональной системы отвода остаточного тепловыделения в условиях полного обесточивания АЭС, описанный в патенте RU 2601285, G21C 15/18, опубл. 2016. В данном способе пар, получаемый в парогенераторе за счет энергии остаточного тепловыделения активной зоны реактора, через быстродействующую редукционную установку направляется в дополнительную паротурбинную установку, в которой вырабатывает необходимую электроэнергию для электроснабжения собственных нужд станции. При этом избыточная часть генерируемого пара направляется в смешивающий подогреватель, где подогревает воду, поступающую из бака холодной воды.

[0014] Полученная горячая вода поступает в бак горячей воды и используется для подогрева питательной воды путем смешения, когда энергии остаточного тепловыделения становится недостаточно, для генерации необходимого количества пара.

[0015] Также известна система пассивной безопасности ядерной энергетической установки, описанная в патенте RU 2467416, G21C 15/18, опубл. 2012. Система содержит герметичное реакторное помещение с размещенным в нем реактором, спинклерную систему, коллектор пара, выход которого соединен с паровым входом эжекторного парового насоса.

[0016] Всасывающий вход эжекторного насоса соединен трубопроводом, оснащенным регулировочным вентилем с резервуаром охлаждающей воды. Нагнетающий выход парового эжекторного насоса соединен трубопроводом с охлаждаемой полостью теплообменника, соединенной с резервуаром охлаждающей воды. В теплоотводящую полость теплообменника подается внешний теплоноситель.

[0017] Резервуар охлаждающей жидкости напорным трубопроводом соединен с вентилем регулирования подачи охлаждающей воды в трубопровод питания спринклерной системы, распыляющей воду на внешнюю поверхность корпуса реактора. На внешнюю поверхность корпуса реактора нанесены слои сферических теплопроводящих элементов, а в нижней части реактора размещен поддон, соединенный трубопроводом и регулирующим вентилем с резервуаром охлаждающей воды.

[0018] Известен ядерный реактор с улучшенным охлаждением при аварийной ситуации, описанный в патенте RU 2496163, G21C 15/18, опубл. 2013. Данный реактор содержит корпус, в котором расположена активная зона реактора, первичный контур для охлаждения реактора, колодец, в котором находится корпус, кольцевой канал, окружающий нижнюю часть корпуса в колодце, и средства, выполненные с возможностью заполнения колодца бака жидкостью.

[0019] Средства сбора пара, генерируемого в верхнем конце колодца, расположены в герметичной оболочке и образуют объем, отделенный от объема герметичной оболочки, обеспечивая появление избыточного давления пара. Средства создания принудительной конвекции жидкости в кольцевом канале выполнены в виде циркуляционного насоса, расположенного в нижнем конце колодца. Средства для приведения в действие циркуляционного насоса содержат лопастной насос, приводимый в действие при помощи указанного собранного пара, и передаточный механизм, связанный с циркуляционным насосом. Данный патент выбран в качестве прототипа.

[0020] Недостатком известных систем и способов охлаждения является значительная сложность используемых конструкций, отрицательно влияющая на общую надежность системы.

[0021] Технический результат предлагаемой группы изобретений заключается в расширении арсенала технических средств и методов отвода тепла от корпуса реактора для любых типов запроектных аварий при полном обесточивании.

[0022] Кроме того, техническим результатом является повышение эффективности теплообмена за счет принудительной циркуляции теплоносителя при обеспечении требования пассивности образа работы системы (т.е. без внешнего источника и управляющего воздействия).

[0023] Указанный технический результат достигается за счет того, что система отвода тепла от корпуса ядерного реактора содержит связанный с источником охлаждающей воды, по крайней мере, один насос, предназначенный для принудительной циркуляции охлаждающей воды снаружи корпуса. Для привода насоса система отвода тепла содержит, по крайней мере, один электродвигатель. Питание электродвигателя осуществляется от термоэлектрических преобразователей прямого преобразования тепловой энергии в электрическую, установленных на внешней поверхности корпуса реактора.

[0024] Термоэлектрические преобразователи могут быть расположены на внешней боковой поверхности корпуса реактора и выполнены в виде пояса термоэлектрических батарей. Как будет показано далее для наилучшего преобразования тепловой энергии в электрическую, термоэлектрические батареи установлены выше слоя расплава металла на поверхности ванны кориума в области, омываемой охлаждающей водой.

[0025] В одном из конкретных вариантов выполнения системы отвода тепла от корпуса реактора циркуляция охлаждающей воды организованна по разомкнутому контуру. Указанный контур включает источник охлаждающей воды, насос, испаритель, конденсатор и сборник конденсата, связанный с источником охлаждающей воды. Испаритель представляет собой внешнюю поверхность корпуса реактора, на которой происходит кипение охлаждающей воды. В качестве конденсатора использован контейнмент, на внутренней поверхности которого конденсируется пар, после чего конденсат поступает в сборник конденсата.

[0026] Для подачи охлаждающей воды на корпус реактора при возникновении аварийной ситуации система отвода тепла снабжена пассивным термоклапаном, срабатывающим при повышении температуры. Термоклапан связывает источник охлаждающей воды с корпусом реактора. Насос включен между источником охлаждающей воды и термоклапаном, а параллельно насосу подключен байпас с обратным клапаном. Обратный клапан открыт в сторону термоклапана и закрывается при появлении давления на выходе насоса.

[0027] В другом конкретном варианте выполнения системы отвода тепла от корпуса реактора циркуляция охлаждающей воды организована по замкнутому контуру. Замкнутый контур включает рубашку охлаждения корпуса реактора, заполненную охлаждающей водой, паровой тракт, воздушный теплообменник, связанный с рубашкой охлаждения паровым трактом, конденсатный тракт и насос, установленный в конденсатном тракте, связывающем воздушный теплообменник с рубашкой охлаждения.

[0028] В частном случае выполнения изобретения в качестве воздушного теплообменника может быть использован воздушный теплообменник штатной системы пассивного отвода тепла (СПОТ), связанный с парогенератором первого контура реактора паровым и конденсатным трактами. При этом рубашка охлаждения соединена с паровым трактом через обратный клапан, в паровом тракте парогенератора расположен обратный клапан, а в конденсатном тракте расположен отсечной клапан, перекрывающий конденсатный тракт к парогенератору при появлении давления на выходе насоса.

[0029] Способ отвода тепла от корпуса ядерного реактора заключается в принудительной циркуляции охлаждающей воды снаружи корпуса реактора с помощью насоса. Насос приводят в действие электродвигателем, запитанным от термоэлектрических преобразователей прямого преобразования тепловой энергии в электрическую, установленных на внешней стороне корпуса реактора.

[0030] В одном из конкретных вариантов реализации способа отвода тепла от корпуса реактора циркуляцию охлаждающей воды осуществляют по разомкнутому контуру путем испарения кипящей охлаждающей воды на поверхности корпуса реактора, отвода пара в пространство контейнмента, конденсации пара на контейнменте, сбора конденсата и подачи охлаждающей воды обратно на корпус реактора.

[0031] В другом конкретном варианте реализации способа отвода тепла циркуляцию охлаждающей воды осуществляют по замкнутому контуру за счет испарения находящейся в рубашке охлаждения корпуса реактора кипящей охлаждающей воды на поверхности корпуса реактора, подачи пара в воздушный теплообменник и возврата конденсата обратно в рубашку охлаждения.

[0032] В качестве воздушного теплообменника могут применять штатный теплообменник СПОТ.

[0033] Вышеизложенное представляет собой краткое изложение сущности изобретения и, таким образом, может содержать упрощения, обобщения, включения и/или исключения подробностей; следовательно, специалистам в данной области техники следует принять во внимание, что данное краткое изложение сущности изобретения является только иллюстративным и не подразумевает какое-либо ограничение.

[0034] Для лучшего понимания сути предлагаемого технического решения ниже приводится описание конкретного примера выполнения изобретения, не являющееся ограничительным примером практической реализации системы и способа отвода тепла от корпуса ядерного реактора в соответствии с данным изобретением со ссылками на чертежи, на которых представлено следующее.

[0035] На фиг. 1 изображена обобщенная схема системы отвода тепла по первому варианту выполнения.

[0036] На фиг. 2 изображен общий вид реактора с установленными термоэлектрическими преобразователями.

[0037] На фиг. 3 изображена обобщенная схема системы отвода тепла по второму варианту выполнения.

[0038] Следует учесть, что на чертежах представлены только те детали, которые необходимы для понимания существа предложения, а сопутствующее оборудование, хорошо известное специалистам в данной области, на чертежах не представлено.

[0039] Как было отмечено ранее, основным назначением настоящего изобретения является удержание расплава в корпусе реактора при аварии за счет отвода тепла от корпуса реактора, основанного на принудительной прокачке охлаждающей воды снаружи корпуса реактора при сохранении общего пассивного образа действия системы в целом. Основным принципом является то, что в качестве источника энергии для функционирования системы безопасности для борьбы с каким-либо вредоносным явлением используется само это явление, что и определяет пассивность образа функционирования.

[0040] Для этого, как показано на фиг. 1, система отвода тепла от корпуса ядерного реактора 1 содержит расположенные в контейнменте 2 источник 3 охлаждающей воды и сборник 4 конденсата, сообщающийся с источником 3 охлаждающей воды. В качестве источника 3 охлаждающей воды могут быть, например, штатные парогенераторные боксы и бассейны выдержки ядерной энергетической установки.

[0041] Контейнмент 2 имеет колодец 5, образующий подреакторное пространство 6, связанное с источником 3 охлаждающей воды трубопроводом 7. На трубопроводе 7 установлен пассивный термоклапан 8. При нормальной работе реактора термоклапан 8 закрыт и охлаждающая вода не поступает из источника 3 охлаждающей воды в подреакторное пространство 6.

[0042] Между источником 3 охлаждающей воды и термоклапаном 8 установлен насос 9, приводимый в действие электродвигателем 10. Параллельно насосу 9 подключен байпас 11 с обратным клапаном 12, открытым в сторону термоклапана 8 (подреакторного пространства 6).

[0043] Энергопитание электродвигателей 10 осуществляется от термоэлектрических преобразователей 13 прямого преобразования тепла в электричество. Термоэлектрические преобразователи 13, как показано на фиг. 2, выполнены в виде пояса термоэлектрических батарей 13а, установленных на внешней поверхности корпуса реактора 1. Для обеспечения надежного расположения и контакта с поверхностью термоэлектрические батареи 13а стянуты обручами 14.

[0044] Для специалиста в данной области техники ясно, что возможно различное электрическое включение термоэлектрических батарей. Например, все термоэлектрические батареи могут быть подключены параллельно или могут быть разбиты на секции для питания отдельных электродвигателей. Также для специалиста будет ясно, что количество насосов 9 и, соответственно, приводных электродвигателей 10 может быть любым и определяется мощностью термоэлектрических преобразователей, а также требованиями надежности (дублирование систем).

[0045] Расположение термоэлектрических преобразователей 13 относительно ванны кориума определяется находится в зависимости от распределения плотности отводимого от расплава теплового потока по внутренней поверхности корпуса, определяемой структурой ванны расплава. Традиционно она представляется двухслойной: поверхностный слой образован более легким расплавом металла (главным образом, нержавеющей стали) - зона А на фиг. 1, а под ним расплав оксидов, преимущественно урана и циркония, - зона Б на фиг. 1. Основная доля остаточного тепловыделения (около 90%) приходится на расплав оксидов.

[0046] Под действием тепловыделения в расплаве оксидов развивается естественная конвекция, закономерности которой определены распределением отводимой мощности по границам ванны расплава. Если по боковой (нижней) поверхности тепловой поток передается через корпус непосредственно охлаждающей воде, то доля мощности, отводимая от верхней поверхности ванны, передается расплаву металла (зона А), а уже от расплава через корпус реактора к охлаждающей воде. Причем частично она отводится свободной конвекцией к боковой поверхности корпуса, граничащей с расплавом металла, а частично - излучением с поверхности расплава.

[0047] При попадании расплава активной зоны на днище реактора после аварии максимальный тепловой поток будет в зоне контакта слоя расплава металла с корпусом (зона А). Установка термоэлектрических преобразователей 13 в данной области неприемлема из-за высокого температурного сопротивления термоэлектрических преобразователей и большого теплового потока.

[0048] В зоне Б значение теплового потока будет ниже, чем в зоне А, из-за наличия корки расплава на внутренней поверхности корпуса реактора с достаточно небольшой теплопроводностью. Однако и в этом случае величина теплового потока будет слишком большой для непосредственной установки термоэлектрических преобразователей на корпус реактора.

[0049] В области выше зоны А тепловой поток через стенку определяется излучением с поверхности расплава металла. В данной зоне будет наименьший тепловой поток, что позволяет расположить на корпусе реактора пояс термоэлектрических батарей. При этом для эффективной работы термоэлектрических преобразователей они должны омываться охлаждающей водой.

[0050] Работа данного исполнения системы (реализация способа) отвода тепла от корпуса реактора происходит следующим образом. Когда происходит авария и корпус нагревается до 450°C, открываются пассивные термоклапаны 8 и в подреакторное пространство 6 начинает самотеком по трубопроводу 7 через открытый обратный клапан 12 поступать вода из источника 3 охлаждающей воды.

[0051] Когда вода заполнит подреакторное пространство 6, она охладит внешнюю сторону термоэлектрических преобразователей 13, появится электроэнергия, запустятся электродвигатели 10 и насосы 9 начнут качать воду на корпус реактора 1. При появлении давления на выходе насоса 9 обратный клапан 12 закроется и весь поток воды будет проходить через насос 9. Вода на корпусе реактора 1 будет кипеть в режиме пузырькового кипения, охлаждать корпус, выходить в виде пара под герметичную оболочку контейнмента 2 и конденсироваться там. Далее конденсат собирается в сборниках 4 конденсата, попадает в источник 3 охлаждающей воды и опять через насос 9 подается в подреакторное пространство 6 на корпус реактора 1.

[0052] Данная схема циркуляции осуществляется в течение необходимого времени. При снижении температуры на корпусе реактора 1 уменьшается электроэнергия, вырабатываемая термоэлектрическими преобразователями 13, и, соответственно, снижается напор на насосе 9. Открывается обратный клапан 12 на байпасе 11, и вода дальше поступает на охлаждение корпуса реактора 1 уже в режиме естественной циркуляции по тому же разомкнутому контуру.

[0053] Для некоторых типов ядерных энергетических установок для организации открытого в герметичное пространство контейнмента тракта циркуляции охлаждающей воды есть проблема, связанная с очень узким сечением кольцевого зазора между корпусом реактора и бетонными конструкциями на выходе пара из подреакторного пространства (что определено требованиями механической прочности крепления корпуса реактора). Данная проблема может привести к значительному снижению расхода охлаждающей жидкости на корпус реактора, даже с применением термоэлектрических преобразователей. Кроме того, при некоторых типах запроектных аварий может не хватить охлаждающей воды, которая собирается в помещениях контейнмента и направляется в подреакторное пространство для охлаждения корпуса реактора.

[0054] Для уменьшения данных негативных факторов предлагается вариант системы отвода тепла от корпуса реактора с применением замкнутого контура. Данная система отвода тепла (фиг. 3) содержит рубашку 15 охлаждения корпуса реактора 1, размещенного в контейнменте 2. Рубашка 15 охлаждения заполнена охлаждающей водой и соединена с воздушным теплообменником 16 паровым 17 и конденсатным 18 трактами.

[0055] В данном конкретном примере выполнения используется теплообменник штатной системы пассивного отвода тепла (СПОТ) от парогенератора 19 ядерной энергетической установки. Теплообменник 16 расположен за пределами герметичного объема контейнмента в вентиляционном канале 20 внешнего корпуса 21 ядерной энергетической установки.

[0056] Парогенератор 19 подключен к паровому тракту 17 через обратный клапан 22, открытый в сторону воздушного теплообменника 16. Рубашка 15 охлаждения также подключена к паровому тракту через обратный клапан 23, открытый в сторону воздушного теплообменника 16.

[0057] В конденсатном такте 18 установлен насос 9, а парогенератор 19 подключен к конденсатному тракту через отсечной клапан 24, открытый при нормальном режиме работы ядерного реактора 1 и закрывающийся при появлении давления на выходе насоса. Насос 9 приводится в действие электродвигателем (на фиг. 3 не показан), питающимся от термоэлектрических преобразователей прямого преобразования тепловой энергии в электрическую установленным на корпусе реактора 1 аналогично описанному ранее.

[0058] Работа данного варианта исполнения системы (реализация способа) отвода тепла от корпуса реактора происходит следующим образом. В режиме ожидания рубашка 15 охлаждения корпуса реактора 1 заполнена водой с температурой корпуса реактора в режиме нормальной эксплуатации, обратный клапан 23 закрыт, циркуляция отсутствует.

[0059] При значительном повышении температуры корпуса реактора увеличивается давление охлаждающей корпус реактора воды, происходит открытие клапана 23 и охлаждающая вода по паровому тракту 17 поступает на теплообменник 16 СПОТ, где передает тепло окружающему воздуху, а затем поступает в рубашку 15 охлаждения по конденсатному тракту 18. Холодная вода из теплообменника 16 СПОП аналогично ранее описанному варианту охлаждает наружную поверхность термоэлектрических преобразователей (на фиг. 3 не показаны), появляется ЭДС, которая запитывает электродвигатель насоса 9, который нагнетает охлаждающую воду в рубашку 15 охлаждения. Организуется замкнутая система охлаждения корпуса реактора в течение неограниченного времени. При этом линии связи теплообменника 16 СПОТ с парогенератором 19 отсекаются с помощью пассивных обратного клапана 22 и отсечного клапана 24 при уменьшении давления в парогенераторе и увеличения давлении в контуре охлаждения корпуса реактора.

[0060] Применение предлагаемой системы отвода тепла от корпуса реактора позволяет:

- обеспечить надежный теплоотвод от корпуса реактора для любых типов запроектных аварий (даже не рассматриваемых гипотетически), в том числе реакторов большой мощности (1000 МВт эл. и выше);

- иметь дополнительный независимый источник энергоснабжения оборудования и контролирующих приборов систем безопасности;

- работать полностью в пассивном режиме (без управляющего воздействия оператором) в режиме соответствия расхода охлаждающей жидкости температуре на поверхности корпуса реактора;

- обеспечить снижение капитальных затрат при строительстве энергоблока за счет отказа от применения в конструкции реактора устройства локализации аварии (УЛР).

[0061] Хотя в данном документе были описаны различные стороны осуществления заявленного изобретения, специалистам в данной области техники понятно, что возможны другие подходы к осуществлению данного изобретения. Различные стороны и реализация данного изобретения изложены в настоящем описании в иллюстративных целях и не подразумевают ограничения, причем объем защиты настоящего изобретения указан в нижеследующей формуле изобретения.

Похожие патенты RU2649417C1

название год авторы номер документа
СИСТЕМА И СПОСОБ АВАРИЙНОГО РАСХОЛАЖИВАНИЯ ЯДЕРНОГО РЕАКТОРА 2017
  • Зарюгин Денис Геннадьевич
  • Лебедев Ларион Александрович
  • Фролов Вадим Викторович
RU2670428C1
КАНАЛ АВАРИЙНОГО РАСХОЛАЖИВАНИЯ ЯДЕРНОГО РЕАКТОРА 2013
  • Лазаренко Георгий Эрикович
  • Лебедев Ларион Александрович
  • Ярыгин Валерий Иванович
RU2554082C2
СИСТЕМА УДЕРЖАНИЯ РАСПЛАВА В КОРПУСЕ РЕАКТОРА 2019
  • Безлепкин Владимир Викторович
  • Митрюхин Андрей Геннадьевич
  • Курчевский Алексей Иванович
  • Сидоров Валерий Григорьевич
RU2726226C1
СИСТЕМА ЗАЩИТЫ ЗАЩИТНОЙ ОБОЛОЧКИ РЕАКТОРНОЙ УСТАНОВКИ ВОДО-ВОДЯНОГО ТИПА 1999
  • Сидоров А.С.
  • Носенко Г.Е.
  • Грановский В.С.
  • Хабенский В.Б.
  • Клейменова Г.И.
  • Безлепкин В.В.
  • Кухтевич И.В.
  • Нигматулин Б.И.
  • Новак В.П.
  • Рогов М.Ф.
  • Корниенко А.Г.
  • Василенко В.А.
  • Беркович В.М.
RU2165108C2
СИСТЕМА ЗАЩИТЫ ЗАЩИТНОЙ ОБОЛОЧКИ РЕАКТОРНОЙ УСТАНОВКИ ВОДО-ВОДЯНОГО ТИПА 1999
  • Сидоров А.С.
  • Носенко Г.Е.
  • Грановский В.С.
  • Хабенский В.Б.
  • Клейменова Г.И.
  • Безлепкин В.В.
  • Кухтевич И.В.
  • Нигматулин Б.И.
  • Новак В.П.
  • Рогов М.Ф.
  • Корниенко А.Г.
  • Василенко В.А.
  • Беркович В.М.
RU2165106C2
СИСТЕМА ЗАЩИТЫ ЗАЩИТНОЙ ОБОЛОЧКИ РЕАКТОРНОЙ УСТАНОВКИ ВОДО-ВОДЯНОГО ТИПА 1999
  • Сидоров А.С.
  • Носенко Г.Е.
  • Грановский В.С.
  • Хабенский В.Б.
  • Клейменова Г.И.
  • Безлепкин В.В.
  • Кухтевич И.В.
  • Нигматулин Б.И.
  • Новак В.П.
  • Рогов М.Ф.
  • Корниенко А.Г.
  • Василенко В.А.
  • Беркович В.М.
RU2165107C2
СИСТЕМА ЗАЩИТЫ ЗАЩИТНОЙ ОБОЛОЧКИ РЕАКТОРНОЙ УСТАНОВКИ ВОДО-ВОДЯНОГО ТИПА 1999
  • Сидоров А.С.
  • Носенко Г.Е.
  • Грановский В.С.
  • Хабенский В.Б.
  • Клейменова Г.И.
  • Безлепкин В.В.
  • Кухтевич И.В.
  • Нигматулин Б.И.
  • Новак В.П.
  • Рогов М.Ф.
  • Корниенко А.Г.
  • Василенко В.А.
  • Беркович В.М.
RU2165652C2
УСТРОЙСТВО ЛОКАЛИЗАЦИИ И ОХЛАЖДЕНИЯ КОРИУМА ЯДЕРНОГО РЕАКТОРА 2012
  • Безлепкин Владимир Викторович
  • Сидоров Валерий Григорьевич
  • Кухтевич Владимир Олегович
  • Курчевский Алексей Иванович
  • Астафьева Вера Олеговна
  • Хабенский Владимир Бенцианович
  • Грановский Владимир Семенович
  • Бешта Севостьян Викторович
  • Гусаров Виктор Владимирович
RU2514419C2
СИСТЕМА ЗАЩИТЫ ЗАЩИТНОЙ ОБОЛОЧКИ РЕАКТОРНОЙ УСТАНОВКИ ВОДО-ВОДЯНОГО ТИПА 1995
  • Сидоров А.С.
  • Носенко Г.Е.
  • Нигматулин Б.И.
  • Клейменова Г.И.
RU2106026C1
Система пассивного отвода тепла 2020
  • Грибов Александр Вячеславович
  • Проданов Никита Александрович
  • Балашов Илья Игоревич
  • Савичев Дмитрий Геннадьевич
  • Ершов Геннадий Алексеевич
RU2758159C1

Иллюстрации к изобретению RU 2 649 417 C1

Реферат патента 2018 года СИСТЕМА И СПОСОБ ОТВОДА ТЕПЛА ОТ КОРПУСА ЯДЕРНОГО РЕАКТОРА

Изобретение относится к ядерной энергетике, в частности к средствам и методам отвода тепла от корпусов преимущественно водо-водяных реакторов большой мощности, и может быть использовано в системах аварийного охлаждения корпуса реактора для удержания расплава активной зоны в корпусе реактора. Способ отвода тепла от корпуса ядерного реактора заключается в принудительной циркуляции охлаждающей воды снаружи корпуса реактора с помощью насоса, приводящегося в действие электродвигателем, запитанным от термоэлектрических преобразователей прямого преобразования тепловой энергии в электрическую, установленных на внешней стороне корпуса реактора. 2 н. и 7 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 649 417 C1

1. Система отвода тепла от корпуса ядерного реактора, содержащая связанный с источником охлаждающей воды, по крайней мере, один насос, предназначенный для принудительной прокачки охлаждающей воды снаружи корпуса, отличающаяся тем, что она снабжена термоэлектрическими преобразователями прямого преобразования тепловой энергии в электрическую, установленными на внешней поверхности корпуса реактора, и, по крайней мере, одним электродвигателем для привода насоса, запитанным от термоэлектрических преобразователей.

2. Система отвода тепла по п. 1, отличающаяся тем, что термоэлектрические преобразователи расположены на внешней боковой поверхности корпуса реактора и выполнены в виде пояса термоэлектрических батарей, установленных выше слоя расплава металла на поверхности ванны кориума в области, омываемой охлаждающей водой.

3. Система отвода тепла по п. 1, отличающаяся тем, что циркуляция охлаждающей воды организованна по разомкнутому контуру, включающему источник охлаждающей воды, насос, испаритель, представляющий собой внешнюю поверхность корпуса реактора, конденсатор, в качестве которого использован контейнмент, и сборник конденсата, связанный с источником охлаждающей воды, при этом она снабжена термоклапаном, связывающим источник охлаждающей воды с корпусом реактора, насос включен между источником охлаждающей воды и термоклапаном, а параллельно насосу подключен байпас с обратным клапаном.

4. Система отвода тепла по п. 1, отличающаяся тем, что циркуляция охлаждающей воды организованна по замкнутому контуру, включающему рубашку охлаждения корпуса реактора, заполненную охлаждающей водой, паровой тракт, воздушный теплообменник, связанный с рубашкой охлаждения паровым трактом, конденсатный тракт и насос, установленный в конденсатном тракте, связывающем воздушный теплообменник с рубашкой охлаждения.

5. Система отвода тепла по п. 4, отличающаяся тем, что в качестве воздушного теплообменника использован воздушный теплообменник штатной системы СПОТ, связанный с парогенератором первого контура реактора паровым и конденсатным трактами, рубашка охлаждения соединена с паровым трактом через обратный клапан, в паровом тракте парогенератора расположен обратный клапан, а в конденсатном тракте расположен отсечной клапан, перекрывающий конденсатный тракт к парогенератору при появлении давления на выходе насоса.

6. Способ отвода тепла от корпуса ядерного реактора, заключающийся в принудительной циркуляции охлаждающей воды снаружи корпуса реактора с помощью насоса, отличающийся тем, что насос приводят в действие электродвигателем, запитанным от термоэлектрических преобразователей прямого преобразования тепловой энергии в электрическую, установленных на внешней стороне корпуса реактора.

7. Способ отвода тепла по п. 6, отличающийся тем, что циркуляцию охлаждающей воды осуществляют по разомкнутому контуру за счет испарения кипящей охлаждающей воды на поверхности корпуса реактора, отвода пара в пространство контейнмента, конденсации пара на контейнменте, сбора конденсата и подачи охлаждающей воды обратно на корпус реактора.

8. Способ отвода тепла по п. 6, отличающийся тем, что циркуляцию охлаждающей воды осуществляют по замкнутому контуру за счет испарения находящейся в рубашке охлаждения корпуса реактора кипящей охлаждающей воды на поверхности корпуса реактора, подачи пара в воздушный теплообменник и возврата конденсата обратно в рубашку охлаждения.

9. Способ отвода тепла по п. 8, отличающийся тем, что в качестве воздушного теплообменника применяют штатный теплообменник СПОТ.

Документы, цитированные в отчете о поиске Патент 2018 года RU2649417C1

US 20100260303 A1, 14.10.2010
СПОСОБ РАСХОЛАЖИВАНИЯ ВОДООХЛАЖДАЕМОГО РЕАКТОРА ПОСРЕДСТВОМ МНОГОФУНКЦИОНАЛЬНОЙ СИСТЕМЫ ОТВОДА ОСТАТОЧНОГО ТЕПЛОВЫДЕЛЕНИЯ В УСЛОВИЯХ ПОЛНОГО ОБЕСТОЧИВАНИЯ АЭС 2015
  • Бессонов Валерий Николаевич
  • Аминов Рашид Зарифович
  • Юрин Валерий Евгеньевич
RU2601285C1
СИСТЕМА ПАССИВНОЙ БЕЗОПАСНОСТИ ЯДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ 2011
  • Варава Александр Николаевич
  • Ильин Александр Валентинович
  • Лактионов Владимир Дмитриевич
  • Мясников Виктор Васильевич
RU2467416C1
RU 95108176 A1, 10.05.1997.

RU 2 649 417 C1

Авторы

Зарюгин Денис Геннадьевич

Лебедев Ларион Александрович

Фролов Вадим Викторович

Даты

2018-04-03Публикация

2017-01-24Подача