СПОСОБ ИНГИБИРОВАНИЯ САМОВОСПЛАМЕНЯЮЩИХСЯ АЛЮМИНИЙОРГАНИЧЕСКИХ СОЕДИНЕНИЙ И СОСТАВ ДЛЯ ЕГО РЕАЛИЗАЦИИ Российский патент 2018 года по МПК A62C3/06 C08F4/52 

Описание патента на изобретение RU2651152C1

Изобретение относится к способам снижения горючести и предотвращения самовоспламенения алюминийорганических соединений, что связано с ингибированием их окисления в газовой фазе соединениями с наименее прочно связанным с ними атомом водорода. В качестве ингибитора горения, повышающего температуру самовоспламенения в газовой фазе, в заявляемом техническом решении предложены: тетралин, изопропилбензол или дифенилметан.

Ранее было установлено, что окисление алюминийорганических соединений (АОС) (особенно низших гомологов) сопровождается самовоспламенением. В результате тепловыделения АОС разлагаются до мелкодисперсного алюминия, водорода и смеси углеводородных газов. Особенно нестойкими АОС являются те из них, которые в строении имеют разветвленные углеводородные радикалы. Самая высокая средняя скорость термического разложения зарегистрирована у триизобутилалюминия (ТИБА) (Н.Н. Корнеев. Химия и технология алюмиийорганических соединений. М.: Изд. «Химия». 1979 г.. 202 с.).

Ввиду того, что механизм окисления АОС имеет цепную природу и их ингибирование осуществляется соединениями с наименее прочно связанными атомом водорода, были проведены исследования по изучению процесса торможения окисления АОС углеводородами на примере ТИБА.

Известен огнетушащий состав для тушения пожаров (Авторские свидетельства SU №1183128, опубл. 07.10.1985), применяемый для тушения легковоспламеняющихся (ЛВЖ) и горючих жидкостей (ПК), включающий тетрафтордибромэтан (ТФДБЭ) в количестве 96-99% масс. и 1-4% масс. перфторэтиламин.

Известен огнетушащий состав для тушения пожаров (Авторское свидетельство SU №724145 от 07 декабря 1979 г.), предназначенный для тушения пожаров ЛВЖ и ГЖ, состоящий из 99-99,5% масс. ТФДЭ и 0,5-1% масс. хлороксида фосфора).

Известен огнетушащий состав для тушения пожаров (Авторское свидетельство SU №835452 от 6 февраля 1981 г.), предназначенный для тушения ЛВЖ и ГЖ, состоящий из 98-98,5% масс. ТФДБЭ и 1,5-2% масс. циклопентадиенилтрикарбонилмарганца).

Анализ этих составов по огнетушащей способности показывает, что все они способствуют повышению огнетушащей эффективности ТФДБЭ при тушении ЛВЖ и ГЖ путем повышения ингибирующего действия в газовой фазе.

Известен ингибитор горения углеводород-воздушных смесей в закрытых объемах (Авторское свидетельство №981338 от 16 августа 1982 г.), состоящий из 95-95,5% масс. ТФДБЭ и 5-15% масс. бромистого бора и принятый за прототип заявляемого технического решения.

Как показали исследования по выбору эффективных ингибиторов горения ТИБА, этот состав можно использовать как средство предотвращения загорания ТИБА и других АОС (к которым относится и триэтилалюминий (ТЭА), при определенном соотношении ТФДБЭ и добавки бромистого бора.

Вместе с тем этот состав является весьма токсичным продуктом.

Задачей настоящего изобретения является повышение температуры самовоспламенения и снижение горючести АОС, таких как ТИБА, наиболее часто применяемого в качестве катализатора в технологическом процессе производства органических полимерных материалов.

Сущность заявляемого способа заключается в том, что в способе ингибирования горения самовоспламеняющегося триизобутилалюминия, заключающемся в его разбавлении веществами, снижающими горючесть в жидкой фазе, в качестве ингибитора горения, повышающего его температуры самовоспламенения в газовой фазе, используют тетралин, или изопропилбензол, или дифенилметан в виде растворителей, имеющих в своей химической структуре наименее прочную связь углерода с атомом водорода С-Н.

Сущность заявляемого состава заключается в том, что в ингибиторе горения для повышения температуры самовоспламенения триизобутилалюминия, представляющего собой вещество, снижающее его горючесть в жидкой фазе, вещество, используемое одновременно как флегматизатор в жидкой фазе, так и ингибитор горения, повышающий температуру самовоспламенения в газовой фазе, содержит в качестве растворителя - тетралин, или изопропилбензол, или дифенилметан при следующих соотношениях компонентов в жидкой фазе: мас.%,

триизобутилалюминий или триэтилалюминий не более 60 тетралин, или изопропилбензол, или дифенилметан остальное

Технический эффект, реализуемый заявляемым способом, обусловлен следующим.

Разбавление ТИБА веществами, являющимися ингибиторами горения в газовой фазе, повышает его температуру самовоспламенения. При этом доминирует радикально-цепной процесс окисления АОС в присутствии растворителей, имеющих в своей химической структуре наименее прочную связь атома углерода с атомом водорода, и именно это обстоятельство лимитирует стадию присоединения О2 к радикалам со слабой С-Н связью. (Энциклопедия. Пожарная безопасность, с. 107 и 384. М., МЧС РФ, 2007, 405 с.; А.Н. Баратов. Горение-Пожар-Взрыв-Безопасность. М. ВНИИПО МЧС России, 2003 г. 363 с.; А.Н. Баратов, И.С. Молчадский. Горение на пожаре. М. ВНИИПО МЧС России, 2011, 502 с.).

Технический эффект, реализуемый заявляемым составом, обусловлен следующим.

Применение в качестве ингибитора горения АОС вещества, используемого одновременно как флегматизатор в жидкой фазе, так и ингибитор горения, повышающий температуру самовоспламенения в газовой фазе и содержащий в качестве растворителя - тетралин, или изопропилбензол, или дифенилметан, позволяет получить эффект ингибирования в радикально-цепном механизме взаимодействия АОС с этими веществами. В результате взаимодействия образуются малоактивные радикалы, легко рекомбинирующие и не склонные к реакции продолжения цепей, что позволяет прервать названную реакцию и осуществить ее полное торможение.

Совершенно очевидно, что процесс ингибирования алюминийорганических соединений (АОС) в газовой фазе является цепным, поэтому, по мнению авторов изобретения, при обосновании и выборе ингибиторов горения следует исходить из этого положения.

В настоящее время АОС используются в химической промышленности в виде катализаторов, в качестве которых наиболее широко применяется триизобутилалюминий (ТИБА). Этим соединениям присущи все основные свойства алюминийорганических соединений: низкая стабильность, склонность к самовоспламенению и интенсивному горению. Особенно нестойкими АОС являются те из них, которые в своем строении имеют разветвленные углеводородные радикалы.

Поэтому этим представителем алюминийорганических соединений авторы изобретения предлагает ограничить круг веществ в заявляемом техническим решении.

Известно, что ароматические соединения (производные бензола) содержат в молекулах особую, так называемую ароматическую кольцевую группу - бензольное ядро С6. В молекуле бензола содержатся чередующиеся три двойные С=С и три одинарные С-С связи. Двойные связи указывают на ненасыщенный характер бензола. Все атомы водорода в молекуле бензола вследствие одинаковой природы связей углерод - водород в бензольном ядре равноценны. Это соединение является сравнительно стабильным, чего нельзя сказать о его производных, например таких, как тетралин (тетрагидронафталин) С10Н12, включающий в свой состав четыре бензольных кольца, дифенилметан (C5H5)2CH2, включающий в свой состав три бензольных кольца, изопропилбензол C6H5 СН2СН2СН3, включающий в свой состав одно бензольное кольцо. (Химия: справочное издание. В. Шретер, К.Х. Лаутеншлегер, Х. Бибрак и др. М. Химия, 1989, 648 с, перевод с немецкого, с. 515; Фрайштат. Реактивы и препараты. Хранение и перевозка. Практическое пособие. М., Изд. «Химия», 1977, 423 с.; Г.Т. Земский. Физико-химические и огнеопасные свойства химических соединений (Справочник в трех книгах). М., ВНИИПО МЧС России, 2009, 2016 гг.).

Производные бензола в силу деформированности молекулы приобретают полярность, а атомы водорода подвижность. Водород в этих соединениях, имеющих в своем составе один или два атома водорода, становится мобильным и входит во взаимодействие с АОС. Поэтому в качестве ингибитора процесса окисления АОС следует использовать только производные бензола, имеющие в своем составе один или два атома водород со слабой связью С-Н. Данные по испытаниям производных бензола представлены в табл. 1 (опыты №№2-9) и в табл. 2.

Поскольку механизм окисления соединений АОС и, в частности, ТИБА, имеет цепную природу и его ингибирование осуществляется соединениями (углеводородами), у которых связь С-Н является наименее прочной.

Были проведены исследования по изучению процесса торможения окисления углеводородами ТИБА. Наиболее эффективными должны быть соединения с возможно более слабой, но в то же время доступной связью С-Н. К ним относятся следующие соединения: тетралин, изопропилбензол, дифенилметан.

Заявляемое техническое решение может быть реализовано с учетом следующих сведений.

Пожаровзрывоопасность АОС обусловлена их высокой реакционной способностью, большим значением теплоты сгорания (~42 103 кДж/кг) и проявляется в склонности к самовоспламенению и интенсивному горению. Их концентрированные растворы обладают резко выраженными пирофорными свойствами: самовоспламенение этих соединений в воздухе происходит при весьма низких температурах, а диапазон воспламенения между нижним и верхним температурными пределами шире, чем у соответствующих углеводородов. Например, чистый (100% основного вещества, масс.) ТИБА (Al (изо-С4Н9)3 имеет температуру самовоспламенения минус 40°C, концентрационные пределы распространения пламени 1,6-8,7% (об.), в то время как изобутан самовоспламеняется при температуре 460°C, а диапазон распространения пламени от 1,8 до 8,4% (об.). Другой пример. Температура самовоспламенения триэтилалюминия (99,7% масс. основного вещества) равна минус 68°C, а температура самовоспламенения этана составляет 472°C. (Н.Н. Корнеев. Химия и технология алюмиийорганических соединений. М.: Изд. «Химия». 1979 г.. 204 с.; А.Я. Корольченко. Пожаровзрывоопасность веществ и материалов и средства их тушения Справочник, части 1 и 2. М. Ассоциация «Пожнаука»., 2000 г.). При самовоспламенении АОС вначале отмечается интенсивное образование белых паров с бурным самонагреванием и искрением, которое в дальнейшем переходит в пламенное горение. Обогащение паровой фазы АОС кислородом приводит к снижению температуры самовоспламенения, а снижение его концентрации в атмосфере - к повышению температуры. Так, высококонцентрированные АОС могут самовоспламеняться при комнатной температуре при содержании в сосуде всего 5-6% (об.) кислорода (Н.Н. Корнеев. Химия и технология алюмиийорганических соединений. М. Изд. «Химия». 1979 г.. 204 с.).

Ингибирование процессов жидкофазного окисления горючих веществ возможно лишь в том случае, если эти процессы имеют радикально-цепной характер.

Согласно современным представлениям о радикально-цепном механизме окисления углеводородов ((Е.Т. Денисов, Н.М. Эмануэль. Успехи химии. №27. Т. 365. 1958 г.; Н.М. Эмануэль, Е.Т. Денисов, З.К. Майзус «Цепные реакции окисления углеводородов в жидкой фазе». М. Изд. «Наука». 1965 г.; А.С. Соколик. Самовоспламенение, пламя и детонация в газах. М. Изд. АН СССР. 1960. 427 с, глава 2) этот процесс осуществляется в результате чередования двух реакций

где RH - любое соединение, обладающее связью С-Н с достаточно подвижным атомом водорода.

Если, вводя в реакцию какое-либо вещество, можно создать конкуренцию реакции ROO*+RH ROOH+R* за счет более быстрого взаимодействия по реакциям

то в результате образуются малоактивные радикалы, легко рекомбинирующие и не склонные к реакции продолжения цепей и окисление можно полностью затормозить.

Таким образом, ингибирование определяется участием ингибитора в реакции продолжения цепей. Взаимодействие радикала с ингибитором может идти по двум механизмам, определяемым реакциями (3) и (4). Скорость реакции (3) зависит от прочности связи In-Н. Наиболее активными ингибиторами этого типа будут соединения с наименее прочно связанными с ними атома водорода, такими как производные бензола. Именно эти соединения и следует применять на практике для ингибирования углеводородов.

В основе механизма по реакции (4) лежит образование донорно-акцепторной связи между радикалом и ингибитором. Для того чтобы связь образовалась, нужен ингибитор, обладающий свободными уровнями энергии, способными взаимодействовать со свободной валентностью.

Соединениями с подобными свойствами как раз и являются многоядерные ароматические углеводороды с электрофильными заместителями.

Таким образом, действие ингибиторов как по реакции (3), так и по реакции (4) основано на взаимодействии их с радикалами, т.е. сфера их действия возможна при радикально-цепном механизме окисления АОС.

Результаты многочисленных исследований, обзор которых представлен в монографии Н.Н. Корнеева. Химия и технология алюмиийорганических соединений. М.: Изд. «Химия». 1979 г., 255 с (с. 85-91), свидетельствует о цепном механизме окисления АОС.

На первом этапе при окислении АОС образуются пероксиды состава:

R3Al+O2=R2AlOOR,

которые затем перегруппировываются в алюминийалкоксисоединения:

R3Al+R2AlOOR=2R2AlOR.

Образовавшиеся пероксиды претерпевают различные превращения, включая бимолекулярное диспропорционирование и внутримолекулярные перегруппировки. При окислении АОС образуются углеводороды (парафины, альдегиды и эфиры). Образование углеводородов объясняется частичным протеканием реакции по свободно-радикальному механизму или в результате образования димерных углеводородов по тримолекулярной реакции.

Поскольку механизм окисления АОС имеет цепную природу и их ингибирование осуществляется соединениями с наименее прочно связанными атомом водорода, были проведены исследования по изучению процесса торможения окисления АОС углеводородами на примере ТИБА.

На основании проведенных исследований был выбран следующий класс растворителей: бензол (инертный растворитель - для сравнения), тетралин, изопропилбензол, дифенилметан (ДФМ), расположенные в порядке уменьшения прочности связи С-Н.

Критерием оценки ингибирующей способности составов служил факт невоспламенения смеси АОС с добавками тетралина или ДФМ.

Испытания проводились в лабораторных условиях при комнатной температуре (20°C) в реакционном сосуде емкостью 500 мл. Концентрированный (99% ТИБА) передавливался из металлической емкости в стеклянный сосуд с помощью газообразного азота (особой очистки). Далее с помощью азота в реакционный сосуд заливался растворитель (ДФМ или тетралин) в определенном количестве и перемешивался с ТИБА с помощью стеклянной мешалки, которая крепилась на крышке сосуда. При вскрытии крышки реакционного сосуда происходило (или не происходило) воспламенение смеси ТИБА с растворителем. Загорание смеси фиксировалось визуально, а также по повышению температуры внутри сосуда с помощью термопары.

Результаты испытаний по определению концентрации добавок (ДФМ, тетралин), при которых происходит (или не происходит) самовоспламенение смеси с ТИБА, представлены в табл. 1.

Как видно из данных табл. 1, добавки ДМФ и тетралина снижают интенсивность самовоспламенения ТИБА. Критическая концентрация добавок, при которой самовоспламенение ТИБА не происходит, составляет 47,5% масс.

Радикально-цепной характер окисления АОС в присутствии растворителей подтверждается аналитически по результатам проведенных опытов.

Были построены кривые изменения температуры во времени при взаимодействии в заданных условиях растворителя и ТИБА. Из уравнения теплового баланса, составленного из равенства скорости химической реакции (по уравнению Аррениуса) и теплоотвода (по уравнению Ньютона), определяли значение энергии активации и порядок реакции.

В вычислениях использовали начальную часть кривой зависимости температуры разогрева во времени, где влиянием конечных продуктов на скорость реакции можно пренебречь.

В результате обработки экспериментальных данных были установлены зависимости константы скорости изменения концентрации ТИБА и скорости расходования ТИБА во времени.

Полученные данные по значениям энергии активации и порядка реакции, полученные из зависимости константы скорости изменения концентрации и скорости расходования ТИБА после усреднения, сведены в табл. 2.

Анализ данных табл. 2 показывает, что применение растворителей с непрочной связью влияет на ход реакции: энергия активации возрастает, порядок реакции снижается. Если для бензола порядок реакции составляет ~1, то для остальных он дробный и близок к 0,5. Эти данные свидетельствуют о радикально-цепном характере процесса окисления ТИБА в присутствии растворителей и именно этот процесс лимитирует стадию присоединения О2 к радикалам со слабой С-Н связью. Одновременно подтверждается, что самовоспламенение ТИБА можно предотвратить, применяя в этих целях следующие соединения: тетралин, изопропилбензол, дифенилметан со слабой С-Н связью.

Предлагаемый состав для ингибирования окисления ТИБА с повышением их температуры самовоспламенения и одновременно для снижения пожарной опасности концентрированных растворов ТИБА путем флегматизации их растворителями со слабой С-Н связью до концентраций, не самовоспламеняющихся при обычных условиях растворов АОС, имеет перспективы использования вышеприведенных добавок при обычных условиях.

Похожие патенты RU2651152C1

название год авторы номер документа
Комбинированный состав для пожаротушения, способ комбинированного пожаротушения и микрокапсулированный огнегасящий агент 2016
  • Забегаев Владимир Иванович
RU2622303C1
СПОСОБ ПОРОШКОВОГО ПОЖАРОТУШЕНИЯ И МИКРОКАПСУЛИРОВАННЫЙ ОГНЕГАСЯЩИЙ АГЕНТ 2012
  • Забегаев Владимир Иванович
RU2555887C2
АНТИПИРЕН, СПОСОБ ЕГО ПОЛУЧЕНИЯ, СПОСОБ ОГНЕЗАЩИТНОЙ ОБРАБОТКИ МАТЕРИАЛОВ И СПОСОБ ТУШЕНИЯ ОЧАГА ГОРЕНИЯ 2009
  • Варфоломеев Сергей Дмитриевич
  • Ломакин Сергей Модестович
  • Горшенев Владимир Николаевич
  • Сахаров Павел Андреевич
  • Сахаров Андрей Михайлович
  • Демин Виктор Леонидович
RU2425069C2
Способ комбинированного тушения пожаров горючих и легковоспламеняющихся жидкостей 2015
  • Забегаев Владимир Иванович
RU2615956C1
ТОПЛИВО ДЛЯ ИМПУЛЬСНОГО ДЕТОНАЦИОННОГО ДВИГАТЕЛЯ 2008
  • Петрухин Николай Васильевич
  • Волков Андрей Валерьевич
  • Загарских Владимир Ильич
RU2387701C1
СПОСОБ ПРЕДОТВРАЩЕНИЯ ВОСПЛАМЕНЕНИЯ И ВЗРЫВА ГОРЮЧИХ СМЕСЕЙ 2000
  • Азатян В.В.
  • Болодьян И.А.
  • Копылов С.Н.
  • Мержанов А.Г.
  • Навценя В.Ю.
  • Шебеко Д.Ю.
  • Шебеко Ю.Н.
RU2187351C2
СПОСОБ ТУШЕНИЯ ПОЖАРА НАНОПОРОШКОМ С ПОМОЩЬЮ ОГНЕТУШИТЕЛЯ ПОРОШКОВОГО И ОГНЕТУШИТЕЛЬ ПОРОШКОВЫЙ 2015
  • Забегаев Владимир Иванович
RU2607761C1
Топливо для гиперзвукового прямоточного воздушно-реактивного двигателя 2016
  • Масюков Максим Владимирович
  • Грек Максим Олегович
  • Залесков Александр Сергеевич
RU2633764C2
АЭРОЗОЛЬОБРАЗУЮЩИЙ СОСТАВ (АОС) И СРЕДСТВО ОБЪЕМНОГО ПОЖАРОТУШЕНИЯ 2008
  • Куцель Владимир Викторович
RU2477163C2
ОГНЕТУШАЩИЙ СОСТАВ ДЛЯ ТУШЕНИЯ ГОРЮЧИХ КРЕМНИЙОРГАНИЧЕСКИХ ЖИДКОСТЕЙ И НЕЙТРАЛИЗАЦИИ ПРИ ТУШЕНИИ ТОКСИЧНЫХ ПАРОВ 2014
  • Вогман Леонид Петрович
  • Горшков Владимир Иванович
  • Габриэлян Станислав Гургенович
RU2570465C1

Реферат патента 2018 года СПОСОБ ИНГИБИРОВАНИЯ САМОВОСПЛАМЕНЯЮЩИХСЯ АЛЮМИНИЙОРГАНИЧЕСКИХ СОЕДИНЕНИЙ И СОСТАВ ДЛЯ ЕГО РЕАЛИЗАЦИИ

Изобретение относится к способам снижения горючести и предотвращения самовоспламенения алюминийорганических соединений (АОС). Для ингибирования горения самовоспламеняющегося триизобутилалюминия (ТИБА) его разбавляют веществами, снижающими его горючесть в жидкой фазе. В качестве ингибитора горения, повышающего его температуру самовоспламенения в газовой фазе, используют тетралин, или изопропилбензол, или дифенилметан в виде растворителей, имеющих в своей химической структуре наименее прочную связь углерода с атомом водорода С-Н. При этом указанные вещества используют одновременно как флегматизатор ТИБА в жидкой фазе, так и ингибитор горения, повышающий температуру самовоспламенения в газовой фазе. Использование ингибитора повышает температуру самовоспламенения и снижает горючесть АОС, таких как ТИБА, наиболее часто применяемого в качестве катализатора в технологическом процессе производства органических полимерных материалов. 2 н.п. ф-лы, 2 табл.

Формула изобретения RU 2 651 152 C1

1. Способ ингибирования горения самовоспламеняющегося триизобутилалюминия, заключающийся в его разбавлении веществами, снижающими горючесть в жидкой фазе, отличающийся тем, что в качестве ингибитора горения, повышающего его температуру самовоспламенения в газовой фазе, используют тетралин, или изопропилбензол, или дифенилметан в виде растворителей, имеющих в своей химической структуре наименее прочную связь углерода с атомом водорода С-Н.

2. Ингибитор горения для повышения температуры самовоспламенения триизобутилалюминия, представляющий собой вещество, снижающее его горючесть в жидкой фазе, отличающийся тем, что вещество, используемое одновременно как флегматизатор в жидкой фазе, так и ингибитор горения, повышающий температуру самовоспламенения в газовой фазе, содержит в качестве растворителя тетралин, или изопропилбензол, или дифенилметан при следующих соотношениях компонентов в жидкой фазе: мас.%,

триизобутилалюминий не более 60 тетралин или изопропилбензол, или дифенилметан остальное

Документы, цитированные в отчете о поиске Патент 2018 года RU2651152C1

Ингибитор горения 1981
  • Петрова Людмила Даниловна
  • Габриэлян Станислав Гургенович
  • Конденко Елена Евгеньевна
  • Баратов Анатолий Николаевич
  • Свицын Роман Адамович
SU981338A1
0
SU159838A1
Коллекторная электрическая машина постоянного напряжения с поперечным магнитным полем 1926
  • В. Петерсен
SU6764A1
WO 9422536 A1, 13.10.1994
KR 100873652 B1, 15.12.2008.

RU 2 651 152 C1

Авторы

Вогман Леонид Петрович

Габриэлян Станислав Гургенович

Забегаев Владимир Иванович

Даты

2018-04-18Публикация

2016-11-28Подача