Композит с металлической матрицей и упрочняющими наночастицами карбида титана и способ его изготовления Российский патент 2018 года по МПК C22C32/00 C22C1/10 B82Y30/00 B22F9/04 C22C21/00 

Описание патента на изобретение RU2653393C1

Изобретение относится к области нанотехнологии, а именно к композиционным материалам с металлической матрицей и наноразмерными упрочняющими частицами.

Известны композиционные материалы с металлической матрицей и упрочняющими частицами [Композиционные материалы: строение, получение, применение. Батаев А.А., Батаев В.А. Изд. Логос, 2006 г., 398 стр]. У композитов в качестве матрицы применяют алюминий, магний, никель, медь и т.д. Упрочняющими частицами служат тугоплавкие частицы различной дисперсности. Основными преимуществами композиционных материалов с металлической матрицей по сравнению с обычным (неусиленным) металлом являются: повышенная прочность, повышенная жесткость, повышенное сопротивление износу, повышенное сопротивление ползучести. Однако такие композиты не могут содержать наноразмерные частицами чрезвычайно малых размеров. Кроме этого, для достижения требуемого уровня свойств требуется значительная доля упрочняющих частиц.

Близким техническим решением для предлагаемого композиционного материала является патент US 5167271 «А Method to produce ceramic reinforced or ceramic-metal matrix composite articles» (B22D 19/14), в котором описан композиционный материал с металлической матрицей и наноразмерными упрочняющими частицами в агломерированном состоянии, изготовленный с расплавлением матрицы. Применение наночастиц в качестве упрочняющих частиц снижает указанные недостатки. Однако агломерация наночастиц не позволяет достичь потенциально высоких значений прочности.

Близким техническим решением для предлагаемого композиционного материала с металлической матрицей и упрочняющими наночастицами и способа его изготовления также является патент РФ 2485196 «Способ получения изделий из композиционных материалов с наноразмерными упрочняющими частицами». Однако такой композит содержит на границе раздела «матрица-упрочняющая частица» различные загрязнения, которые препятствуют достижению максимального уровня прочности. В то же время наличие загрязнений на поверхности раздела не позволяет (в случае расплавления матрицы) достигнуть удовлетворительного уровня смачивания частиц расплавом, что чрезвычайно затруднит равномерное распределение частиц в расплаве.

Наиболее близким техническим решением для предлагаемого композиционного материала является композит с алюминиевой матрицей и упрочняющими наночастицами карбида титана и способ его изготовления, описанные в статье D. Gu, Z. Wang, Y. Shen, Q. Li, Y. Li. In-situ TiC particle reinforced Ti-Al matrix composites: Powder preparation by mechanical alloying and Selective Laser Melting behavior. Applied Surface Science, 2009, v. 255, N 22, pp. 9230-9240. Однако размер упрочняющих частиц, получаемых по такому способу, не может быть минимальным, так как исходные частицы прекурсоров имеют размер порядка микрометров. Кроме этого, для достижения цели требуется значительное время обработки (35 часов и выше).

Задачей изобретения является снижение размера упрочняющих частиц (в процессе "in-situ" синтеза наночастиц карбида титана) при отсутствии загрязнений на поверхности раздела «матрица-упрочняющая частица», что приведет к улучшению механических характеристик и приведет к экономии материала в случае применения его в литейных технологиях в качестве "master-alloy".

Для выполнения поставленной задачи композит с алюминиевой матрицей и упрочняющими наночастицами карбида титана, согласно представленному техническому решению, содержит упрочняющие наночастицы карбида титана округлой формы размером 5-500 нм в количестве 1-50 об. % от всего объема композита, полученные при механическом легировании "in situ" синтезом в алюминиевой матрице из первого прекурсора, состоящего из наноалмазного порошка или из наноалмазного порошка и углеродных материалов, выбранных из ряда, включающего сажу, графит, фуллерены, углеродные нанотрубки, и второго карбидообразующего прекурсора в виде порошка титана, и алюминиевую матрицу, имеющую литую структуру, полученную после кристаллизации расплава алюминия или алюминиевого сплава.

Поставленная задача может достигаться также тем, что композит дополнительно содержит упрочняющие наночастицы двойных карбидов системы алюминий – титан - углерод.

Для выполнения поставленной задачи предложен способ получения композиционного материала с алюминиевой матрицей и упрочняющими наночастицами карбида титана, характеризующийся тем, что получают композиционные гранулы механическим легированием смеси, содержащей первый прекурсор для синтеза карбида титана, состоящий из наноалмазного порошка, второй прекурсор для синтеза карбида титана в виде порошка титана и алюминий в качестве материала матрицы в количестве 20-60 мас. % в течение 1-10 ч с обеспечением "in situ" синтеза упрочняющих наночастиц карбида титана, затем полученные композиционные гранулы помещают в расплав алюминия или алюминиевого сплава, перемешивают и осуществляют кристаллизацию с образованием литой структуры матрицы.

Поставленная задача может достигаться также тем, что вначале в течение 5-30% от общего времени механического легирования осуществляют механическое легирование смеси, содержащей алюминий в качестве материала матрицы и наноалмазный порошок, а затем добавляют титановый порошок и осуществляют механическое легирование полученной смеси в оставшееся время.

Поставленная задача может достигаться также тем, что механическое легирование смеси ведут с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде сажи при соотношении наноалмазного порошка к саже от 9:1 до 1:9.

Поставленная задача может достигаться также тем, что механическое легирование смеси ведут с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде графита при соотношении наноалмазного порошка к графиту от 9:1 до 1:9.

Поставленная задача может достигаться также тем, что механическое легирование смеси ведут с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде фуллеренов при соотношении наноалмазного порошка к фуллеренам от 9:1 до 1:9.

Поставленная задача может достигаться также тем, что механическое легирование смеси ведут с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде углеродных нанотрубок при соотношении наноалмазного порошка к углеродным нанотрубкам от 9:1 до 1:9.

Поставленная задача может достигаться также тем, что механическое легирование смеси ведут с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде смеси порошков сажи, графита, фуллеренов и углеродных нанотрубок при соотношении наноалмазного порошка к смеси дополнительных прекурсоров от 9:1 до 1:9, при этом в смеси дополнительных прекурсоров весовая доля сажи не превышает 80%, весовая доля графита не превышает 80%, весовая доля фуллеренов не превышает 80%, весовая доля углеродных нанотрубок не превышает 80%.

Поставленная задача может достигаться также тем, что механическое легирование ведут при температурах от 0 до минус 196 градусов по Цельсию.

Поставленная задача может достигаться также тем, что отношение массы углеродсодержащего материала к массе титанового порошка равняется 1 к 3,5-4,5.

Поставленная задача может достигаться также тем, что перед помещением композиционных гранул в расплав алюминия или алюминиевого сплава композиционные гранулы подпрессовывают в компактные брикеты с размером не менее 4 мм.

Предложен композит с металлической матрицей и упрочняющими наночастицами карбида титана. В композите, содержащем алюминиевую матрицу и упрочняющие наночастицы карбида титана, согласно изобретению содержитатся упрочняющие наночастицы карбида титана округлой формы размером 5-500 нм в количестве 1-50 об. % от всего объема композита, полученные при механическом легировании "in situ" синтезом в алюминиевой матрице из первого прекурсора, состоящего из наноалмазного порошка или из наноалмазного порошка и углеродных материалов, выбранных из ряда, включающего сажу, графит, фуллерены, углеродные нанотрубки, и второго карбидообразующего прекурсора в виде порошка титана, и алюминиевую матрицу, имеющую литую структуру, полученную после кристаллизации расплава алюминия или алюминиевого сплава.

В композите, согласно изобретению, возможно, что он дополнительно содержит упрочняющие наночастицы двойных карбидов системы алюминий – титан - углерод.

Предложен способ изготовления композита с алюминиевой матрицей и упрочняющими наночастицами карбида титана, характеризующийся тем, что получают композиционные гранулы механическим легированием смеси, содержащей первый прекурсор для синтеза карбида титана, состоящий из наноалмазного порошка, второй прекурсор для синтеза карбида титана в виде порошка титана и алюминий в качестве материала матрицы в количестве 20-60 мас. % в течение 1-10 ч с обеспечением "in situ" синтеза упрочняющих наночастиц карбида титана, затем полученные композиционные гранулы помещают в расплав алюминия или алюминиевого сплава, перемешивают и осуществляют кристаллизацию с образованием литой структуры матрицы.

В способе, согласно изобретению, вначале в течение 5-30% от общего времени механического легирования осуществляют механическое легирование смеси, содержащей алюминий в качестве материала матрицы и наноалмазный порошок, а затем добавляют титановый порошок и осуществляют механическое легирование полученной смеси в оставшееся время.

В способе, согласно изобретению, механическое легирование смеси ведут с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде сажи при соотношении наноалмазного порошка к саже от 9:1 до 1:9.

В способе, согласно изобретению, механическое легирование смеси ведут с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде графита при соотношении наноалмазного порошка к графиту от 9:1 до 1:9.

В способе, согласно изобретению, механическое легирование смеси ведут с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде фуллеренов при соотношении наноалмазного порошка к фуллеренам от 9:1 до 1:9.

В способе, согласно изобретению, механическое легирование смеси ведут с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде углеродных нанотрубок при соотношении наноалмазного порошка к углеродным нанотрубкам от 9:1 до 1:9.

В способе, согласно изобретению, механическое легирование смеси ведут с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде смеси порошков сажи, графита, фуллеренов и углеродных нанотрубок при соотношении наноалмазного порошка к смеси дополнительных прекурсоров от 9:1 до 1:9, при этом в смеси дополнительных прекурсоров весовая доля сажи не превышает 80%, весовая доля графита не превышает 80%, весовая доля фуллеренов не превышает 80%, весовая доля углеродных нанотрубок не превышает 80%.

В способе, согласно изобретению, механическое легирование ведут при температурах от 0 до минус 196 градусов по Цельсию.

В способе, согласно изобретению, отношение массы углеродсодержащего материала к массе титанового порошка равняется 1 к 3,5-4,5.

В способе, согласно изобретению, перед помещением композиционных гранул в расплав алюминия или алюминиевого сплава композиционные гранулы подпрессовывают в компактные брикеты с размером не менее 4 мм.

Композит с металлической матрицей и упрочняющими наночастицами карбида титана содержит упрочняющие наночастицы карбида титана округлой формы размером 5-500 нм в количестве 1-50 об. % от всего объема композита, полученные при механическом легировании "in situ" синтезом в алюминиевой матрице из первого прекурсора, состоящего из наноалмазного порошка или из наноалмазного порошка и углеродных материалов, выбранных из ряда, включающего сажу, графит, фуллерены, углеродные нанотрубки, и второго карбидообразующего прекурсора в виде порошка титана, и алюминиевую матрицу, имеющую литую структуру, полученную после кристаллизации расплава алюминия или алюминиевого сплава. Округлая форма упрочняющих частиц (то есть отсутствие острых граней) позволяет избежать появления концентраторов напряжений, что может провоцировать начало разрушения. Достигается такая форма тем, что синтез упрочняющих частиц происходит непосредственно в матрице композита (то есть "in situ" методом), а не раздроблением больших частиц, при котором образуются сколы и, следовательно, острые грани. Размер исходной наноалмазной частицы равен, в основном, 4-6 нм, поэтому размер синтезируемой частицы может быть равен приблизительно 5 нм. Однако первичные наноалмазные частицы объединены в агломераты, размер которых может достигать миллиметров. Однако при механическом легировании агломераты разрушаются; при правильно выбранных технологических режимах размер упрочняющих частиц карбида титана не превышает 500 нм. Именно для достижения таких малых размеров упрочняющих частиц и предлагается применять в качестве прекурсоров наноалмазные порошки (размер которых определяет размер синтезируемых частиц) и частицы титанового порошка (для синтеза карбида титана требуется титан и углеродсодержащий материал). Для экономии наноалмазов возможно добавлять другие углеродсодержащие материалы из ряда, включающего сажу, графит, фуллерены, углеродные нанотрубки. Размер частиц титанового порошка мало влияет на размер синтезируемых частиц. Однако, чем мельче размер частиц титанового порошка, тем быстрее будет осуществлен контакт наноалмазов с титаном и тем быстрее начнет протекать синтез.

В композите возможно, что он дополнительно содержит упрочняющие наночастицы двойных карбидов системы алюминий – титан - углерод. Такие частицы имеют хорошее сцепление с матрицей, формируются при наличии избыточного титана (в том числе в микрообъемах). Хорошее сцепление с матрицей приводит к повышению прочности.

Способ изготовления композита с алюминиевой матрицей и упрочняющими наночастицами карбида титана характеризуется тем, что получают композиционные гранулы механическим легированием смеси, содержащей первый прекурсор для синтеза карбида титана, состоящий из наноалмазного порошка, второй прекурсор для синтеза карбида титана в виде порошка титана и алюминий в качестве материала матрицы в количестве 20-60 мас. % в течение 1-10 ч с обеспечением "in situ" синтеза упрочняющих наночастиц карбида титана, затем полученные композиционные гранулы помещают в расплав алюминия или алюминиевого сплава, перемешивают и осуществляют кристаллизацию с образованием литой структуры матрицы. Формула карбида титана TiC. Его молярная масса примерно 59,88 г/моль. У титана примерно 47,87 г/моль. У углерода примерно 12,01 г/моль. Для синтеза карбида титана требуется соотношение титана к углероду 47,87:12,01. В процессе механического легирования происходит синтез карбида титана. При этом на поверхности образующихся наночастиц отсутствуют какие-либо загрязнения, которые могли бы быть внесены из атмосферы, так как такого контакта нет. В процессе механического легирования происходит разрушение наноалмазных агломератов, и если в синтез вступает отдельная наноалмазная частица размером 4-5 нм, то размер синтезированной наночастицы карбида титана может составлять 6-8 нм. Однако на практике в синтезе одной наночастицы карбида титана участвует несколько наноалмазных частиц, и средний размер синтезируемых наночастиц карбида титана равен 20-50 нм и в основном не превышает 100 нм. Если материала матрицы очень мало (менее 20%), то синтез карбида титана протекает очень интенсивно, наноалмазные агломераты не успевают раздробиться и получаются частицы микронных размеров. Если материала матрицы очень много (более 60%), то матрицы препятствуют контакту титана и наноалмазов и синтеза карбида титана практически не происходит, а возможна реакция титана с компонентами материала матрицы. Механическое легирование в течение менее 1 часа не приведет к полному синтезу частиц карбида титана. Увеличение времени механического легирования более 10 часов нецелесообразно, так как синтез уже прошел и дальнейшая обработка не может что-либо изменить. Так как синтез наночастиц карбида титана наиболее эффективно протекает при малом содержании материала матрицы, то для получения композита с меньшим содержанием упрочняющих частиц гранулы композита, полученные механическим легированием, размещают в расплаве материала матрицы, например алюминия. Полученный материал возможно применять для литейных технологий.

В способе возможно вначале в течение 5-30% от общего времени механического легирования осуществлять механическое легирование смеси, содержащей алюминий в качестве материала матрицы и наноалмазный порошок, а затем добавлять титановый порошок и осуществлять механическое легирование полученной смеси в оставшееся время. Это позволит еще более снизить размер упрочняющих наночастиц карбида титана, так как вначале будут раздроблены все агломераты и синтез будет происходить при участии неагломерированных наноалмазных частиц. Снижение времени предварительной обработки менее 5% от общего времени не позволит полностью раздробить агломераты. А увеличение предварительной обработки более чем 30% от общего времени обработки приведет к затруднению синтеза, так как начнется реакция материала матрицы с наноалмазами или образование оксидов материала матрицы.

В способе возможно механическое легирование смеси вести с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде сажи при соотношении наноалмазного порошка к саже от 9:1 до 1:9. Это удешевит процесс, но наличие наноалмазов позволит раздробить частицы сажи и равномерно распределить их в матрице. При соотношении наноалмазов к саже более чем 9:1 удешевления практически не произойдет, так как дополнительная операция смешивания с сажей требует также затрат. Снижение соотношения наноалмазов к саже менее чем 1:9 приведет к затруднению раздробления и равномерного распределения сажи в смеси, что сделает невозможным синтез наноразмерных частиц.

В способе возможно механическое легирование смеси вести с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде графита при соотношении наноалмазного порошка к графиту от 9:1 до 1:9. Это удешевит процесс, но наличие наноалмазов позволит раздробить частицы графита и равномерно распределить их в матрице. При соотношении наноалмазов к графиту более чем 9:1 удешевления практически не произойдет, так как дополнительная операция смешивания с графитом требует также затрат. Снижение соотношения наноалмазов к графиту менее чем 1:9 приведет к затруднению раздробления и равномерного распределения графита в смеси, что сделает невозможным синтез наноразмерных частиц.

В способе возможно механическое легирование смеси вести с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде фуллеренов при соотношении наноалмазного порошка к фуллеренам от 9:1 до 1:9. Фуллерены являются наночастицами, но их сложно равномерно распределить в матрице. Наличие наноалмазов помогает равномерно распределить фуллерены в матрице при механическом легировании. Наличие наноразмерных фуллеренов положительно сказывается на снижении синтезируемых частиц карбида титана, однако при соотношении наноалмазов к фуллеренам более чем 9:1 это влияние практически не заметно (но все равно требует дополнительных затрат). При соотношении наноалмазов к фуллеренам менее чем 1:9 влияние наличия наноалмазов снижается, что затрудняет равномерное распределение фуллеренов в матрице.

В способе возможно механическое легирование смеси вести с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде углеродных нанотрубок при соотношении наноалмазного порошка к углеродным нанотрубкам от 9:1 до 1:9. Углеродные нанотрубки являются наночастицами, но их сложно равномерно распределить в матрице. Наличие наноалмазов помогает равномерно распределить углеродные нанотрубки в матрице при механическом легировании. Наличие наноразмерных углеродных нанотрубок положительно сказывается на снижении синтезируемых частиц карбида титана, однако при соотношении наноалмазов к углеродным нанотрубкам более чем 9:1 это влияние практически не заметно (но все равно требует дополнительных затрат). При соотношении наноалмазов к углеродным нанотрубкам менее чем 1:9 влияние наличия наноалмазов снижается, что затрудняет равномерное распределение углеродных нанотрубок в матрице.

В способе возможно механическое легирование смеси вести с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде смеси порошков сажи, графита, фуллеренов и углеродных нанотрубок при соотношении наноалмазного порошка к смеси дополнительных прекурсоров от 9:1 до 1:9, при этом в смеси дополнительных прекурсоров весовая доля сажи не превышает 80%, весовая доля графита не превышает 80%, весовая доля фуллеренов не превышает 80%, весовая доля углеродных нанотрубок не превышает 80%. Сажа, графит, фуллерены и углеродные нанотрубки - это углеродные материалы, которые имеют свои особенности при синтезе наночастиц карбида титана. При комбинировании состава можно получить различное распределение размеров и формы наночастиц карбида титана. Однако при соотношении наноалмазов к данной смеси более чем 9:1 влияние материалов из смеси практически не заметно (но все равно требует дополнительных затрат). При соотношении наноалмазов к данной смеси менее чем 1:9 влияние наличия наноалмазов снижается, что затрудняет равномерное распределение материалов смеси (и, следовательно, наночастиц карбида титана) в матрице. Если в смеси какая-то составляющая превышает 80%, то влияние остальных компонентов становится незаметным.

Способ возможно выполнять с применением механического легирования при температурах от 0 до минус 196 градусов по Цельсию. Эта операция позволит снизить интенсивность синтеза частиц карбида титана, что приведет к синтезу большего количества наночастиц карбида титана.

В способе возможно устанавливать отношение массы углеродсодержащего материала к массе титанового порошка, равное 1 к 3,5-4,5. Для синтеза карбида титана требуется отношение компонентов (титана к наноалмазам) 47,87:12,01=3,985. Однако в некоторых случаях допустимо (и даже рекомендуется) вводить повышенное содержание наноалмазов, а в некоторых случаях - повышенное содержание титана. Повышенное содержание наноалмазов необходимо вводить в том случае, когда невозможны отрицательные эффекты от реакции наноалмазов с материалом матрицы, но это позволит увеличить вероятность встречи наноалмазов с титаном (то есть способствует синтезу карбида титана). Повышенное содержание титана необходимо применять для тех случаев, когда возможны негативные эффекты от реакции наноалмазов с материалом матрицы. Повышенное содержание титана поможет быстрее ввести в синтез все количество наноалмазов.

В способе возможно перед помещением композиционных гранул в расплав алюминия или алюминиевого сплава композиционные гранулы подпрессовывать в компактные брикеты с размером не менее 4 мм. При разбавлении полученного механическим легированием композита в расплаве матрицы возможно применять не только гранулы (полученные при механическом легировании) размером до 100 мкм. В некоторых случаях более эффективно и безопасно применять подпрессованные брикеты. В случае подпрессовки брикетов с размером менее 4 мм затраты на подпрессовку увеличиваются, а эффект становится незаметным.

Пример 1

Исходными материалами являлись порошки алюминия, титана и наноалмазов детонационного синтеза. Коммерчески доступный порошок алюминия технической чистоты применялся для формирования матрицы, размер исходных частиц составлял 30-100 мкм. Прекурсорами для синтеза частиц карбида титана являлись коммерчески доступные титановые порошки с размером частиц до 100 мкм и порошки наноалмазов детонационного синтеза производства «Комбинат Электрохимприбор». Первичные наноалмазные частицы имеют форму сферическую или близкую к сферической; размер, в основном, равен 4-6 нм. Отличительной особенностью наноалмазов, как и всех нанопорошков, является то, что они объединены в агломераты, размер которых может достигать сотен микрометров. Различают первичные и вторичные (иногда и третичные) агломераты по прочности связи наночастиц в них. Наиболее прочными являются первичные агломераты. Уже в начале механического легирования вторичные агломераты разбиваются на первичные микроагломераты размером до 100 нм. Для полного раздробления агломератов требуется значительное время обработки.

Механическое легирование осуществляли в планетарной мельнице Retsch РМ400 в атмосфере аргона без применения поверхностно-активных веществ в герметически закрытых барабанах объемом 500 мл при скорости вращения 400 об/мин. Мелющим технологическим инструментом являлись шары из хромистой стали диаметром 12 мм. Отношение веса шаров к весу обрабатываемого материала равнялось 10:1. В планетарной мельнице данного типа применено воздушное охлаждение. Для предотвращения перегрева обрабатываемого материала мельницу останавливали на 5 мин для охлаждения после каждых 10 мин обработки. Время остановок на охлаждение не учитывалось в суммарном времени обработки.

Общий вес исходных компонентов для одного барабана составлял 70 г.

Состав исходных смесей для получения композита: Al - 30 г, Ti - 31,98 г; НА - 8,02 г, то есть 30 г Al + 40 г (57,14%) (Ti+C) или 42,86% масс. Al + 45,69% масс. Ti + 11,45% масс. С (наноалмазов). Время обработки составило 7 часов.

Дифрактограмма такого материала показала, что синтез карбида титана прошел полностью. Исследование структуры показало, что упрочняющие частицы распределены равномерно в матрице. Их средний размер равен 25 нм.

Пример 2

Исходными материалами являлись порошки алюминия, титана, наноалмазов детонационного синтеза и сажи. Прекурсорами для синтеза частиц карбида титана являлись коммерчески доступные титановые порошки, а также порошки наноалмазов детонационного синтеза и порошки сажи.

Механическое легирование осуществляли в планетарной мельнице Retsch РМ400 в атмосфере аргона без применения поверхностно-активных веществ в герметически закрытых барабанах объемом 500 мл при скорости вращения 400 об/мин. Мелющим технологическим инструментом являлись шары из хромистой стали диаметром 12 мм. Отношение веса шаров к весу обрабатываемого материала равнялось 10:1. В планетарной мельнице данного типа применено воздушное охлаждение. Для предотвращения перегрева обрабатываемого материала мельницу останавливали на 5 мин для охлаждения после каждых 10 мин обработки. Время остановок на охлаждение не учитывалось в суммарном времени обработки.

Общий вес исходных компонентов для одного барабана составлял 70 г.

Состав исходных смесей для получения композита: Al - 30 г, Ti - 31,98 г; НА - 4,02 г и сажи - 4 г, то есть 30 г Al + 40 г (57,14%) (Ti+C) или 42,86% масс. Al + 45,69% масс. Ti + 5,74% масс. С (наноалмазов) и 5,71% масс. С (сажи). Дифрактограмма такого материала показала, что синтез карбида титана прошел полностью. Исследование структуры показало, что упрочняющие частицы распределены равномерно в матрице. Их средний размер равен 30 нм.

Пример 3

Исходными материалами являлись порошки алюминия, титана, наноалмазов детонационного синтеза, сажи, графита, фуллеренов и углеродных нанотрубок. Коммерчески доступный порошок алюминия технической чистоты применялся для формирования матрицы, размер исходных частиц составлял 30-100 мкм. Прекурсорами для синтеза частиц карбида титана являлись коммерчески доступные титановые порошки с размером частиц до 100 мкм, порошки наноалмазов детонационного синтеза, сажа, графит, фуллерены и углеродные нанотрубки.

Механическое легирование осуществляли в планетарной мельнице Retsch РМ400 в атмосфере аргона без применения поверхностно-активных веществ в герметически закрытых барабанах объемом 500 мл при скорости вращения 400 об/мин. Мелющим технологическим инструментом являлись шары из хромистой стали диаметром 12 мм. Отношение веса шаров к весу обрабатываемого материала равнялось 10:1. В планетарной мельнице данного типа применено воздушное охлаждение. Для предотвращения перегрева обрабатываемого материала мельницу останавливали на 5 мин для охлаждения после каждых 10 мин обработки. Время остановок на охлаждение не учитывалось в суммарном времени обработки.

Общий вес исходных компонентов для одного барабана составлял 70 г.

Состав исходных смесей для получения композита: Al - 30 г, Ti - 31,98 г; наноалмазов - 2.02 г, сажи - 1.5 г, графита 1,5 г, фуллеренов - 1,5 г, углеродных нанотрубок - 1,5 г, то есть 30 г Al + 40 г (57,14%) (Ti+C) или 42,86% масс. Al + 45,69% масс. Ti + 2,89% масс. наноалмазов + 2,14% масс. сажи + 2,14% масс. графита + 2,14% масс. фуллеренов + 2,14% масс. углеродных нанотрубок. Время обработки составило 10 часов.

Дифрактограмма такого материала показала, что синтез карбида титана прошел полностью. Исследование структуры показало, что упрочняющие частицы распределены равномерно в матрице. Их средний размер равен 18 нм.

Похожие патенты RU2653393C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ С НАНОРАЗМЕРНЫМИ УПРОЧНЯЮЩИМИ ЧАСТИЦАМИ 2012
  • Попов Владимир Алексеевич
RU2485196C1
Гибридный композиционный материал 2021
  • Попов Владимир Алексеевич
RU2765969C1
Композиционный материал и способ его изготовления 2022
  • Попов Владимир Алексеевич
RU2772480C1
Композиционный материал с прочной металлической матрицей и упрочняющими частицами карбида титана и способ его изготовления 2017
  • Попов Владимир Алексеевич
RU2664747C1
Композиционный материал с металлической матрицей и упрочняющими наночастицами и способ его изготовления 2015
  • Попов Владимир Алексеевич
RU2630159C2
Способ получения наноструктурного композиционного материала на основе алюминия 2019
  • Евдокимов Иван Андреевич
  • Грязнова Марина Игоревна
  • Баграмов Рустэм Хамитович
  • Ломакин Роман Леонидович
  • Перфилов Сергей Алексеевич
  • Поздняков Андрей Анатольевич
RU2716930C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ С МЕТАЛЛИЧЕСКОЙ МАТРИЦЕЙ И НАНОРАЗМЕРНЫМИ УПРОЧНЯЮЩИМИ ЧАСТИЦАМИ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2014
  • Попов Владимир Алексеевич
RU2574534C2
МЕТАЛЛОМАТРИЧНЫЙ КОМПОЗИТ 2011
  • Попов Владимир Алексеевич
RU2456361C1
Способ получения нанокомпозиционного материала на основе меди, упрочненного углеродными нановолокнами 2018
  • Толочко Олег Викторович
  • Кольцова Татьяна Сергеевна
  • Ларионова Татьяна Васильевна
  • Бобрынина Елизавета Викторовна
RU2696113C1
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛОМАТРИЧНОГО КОМПОЗИТА С НАНОРАЗМЕРНЫМИ КОМПОНЕНТАМИ 2012
  • Попов Владимир Алексеевич
RU2485195C1

Реферат патента 2018 года Композит с металлической матрицей и упрочняющими наночастицами карбида титана и способ его изготовления

Группа изобретений относится к композитам с алюминиевой матрицей и упрочняющими наночастицами карбида титана. Композит содержит упрочняющие наночастицы карбида титана округлой формы размером 5-500 нм в количестве 1-50 об. % от всего объема композита и алюминиевую матрицу, имеющую литую структуру. Способ включает получение композиционных гранул механическим легированием смеси, содержащей первый прекурсор для синтеза карбида титана, состоящий из наноалмазного порошка, второй прекурсор для синтеза карбида титана в виде порошка титана и алюминий в качестве материала матрицы в количестве 20-60 мас. % в течение 1-10 ч с обеспечением "in situ" синтеза упрочняющих наночастиц карбида титана. Полученные композиционные гранулы помещают в расплав алюминия или алюминиевого сплава, перемешивают и осуществляют кристаллизацию с образованием литой структуры матрицы. Обеспечивается улучшение механических характеристик композита. 2 н. и 10 з.п. ф-лы, 6 пр.

Формула изобретения RU 2 653 393 C1

1. Композит с алюминиевой матрицей и упрочняющими наночастицами карбида титана, отличающийся тем, что он содержит упрочняющие наночастицы карбида титана округлой формы размером 5-500 нм в количестве 1-50 об. % от всего объема композита, полученные при механическом легировании "in situ" синтезом в алюминиевой матрице из первого прекурсора, состоящего из наноалмазного порошка или из наноалмазного порошка и углеродных материалов, выбранных из ряда, включающего сажу, графит, фуллерены, углеродные нанотрубки, и второго карбидообразующего прекурсора в виде порошка титана, и алюминиевую матрицу, имеющую литую структуру, полученную после кристаллизации расплава алюминия или алюминиевого сплава.

2. Композит по п. 1, отличающийся тем, что он дополнительно содержит упрочняющие наночастицы двойных карбидов системы алюминий - титан - углерод.

3. Способ изготовления композита с алюминиевой матрицей и упрочняющими наночастицами карбида титана по п. 1, характеризующийся тем, что получают композиционные гранулы механическим легированием смеси, содержащей первый прекурсор для синтеза карбида титана, состоящий из наноалмазного порошка, второй прекурсор для синтеза карбида титана в виде порошка титана и алюминий в качестве материала матрицы в количестве 20-60 мас. % в течение 1-10 ч с обеспечением "in situ" синтеза упрочняющих наночастиц карбида титана, затем полученные композиционные гранулы помещают в расплав алюминия или алюминиевого сплава, перемешивают и осуществляют кристаллизацию с образованием литой структуры матрицы.

4. Способ по п. 3, отличающийся тем, что вначале в течение 5-30% от общего времени механического легирования осуществляют механическое легирование смеси, содержащей алюминий в качестве материала матрицы и наноалмазный порошок, а затем добавляют титановый порошок и осуществляют механическое легирование полученной смеси в оставшееся время.

5. Способ по п. 3, отличающийся тем, что механическое легирование смеси ведут с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде сажи при соотношении наноалмазного порошка к саже от 9:1 до 1:9.

6. Способ по п. 3, отличающийся тем, что механическое легирование смеси ведут с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде графита при соотношении наноалмазного порошка к графиту от 9:1 до 1:9.

7. Способ по п. 3, отличающийся тем, что механическое легирование смеси ведут с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде фуллеренов при соотношении наноалмазного порошка к фуллеренам от 9:1 до 1:9.

8. Способ по п. 3, отличающийся тем, что механическое легирование смеси ведут с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде углеродных нанотрубок при соотношении наноалмазного порошка к углеродным нанотрубкам от 9:1 до 1:9.

9. Способ по п. 3, отличающийся тем, что механическое легирование смеси ведут с добавлением дополнительного прекурсора для синтеза наночастиц карбида титана в виде смеси порошков сажи, графита, фуллеренов и углеродных нанотрубок при соотношении наноалмазного порошка к смеси дополнительных прекурсоров от 9:1 до 1:9, при этом в смеси дополнительных прекурсоров весовая доля сажи не превышает 80%, весовая доля графита не превышает 80%, весовая доля фуллеренов не превышает 80%, весовая доля углеродных нанотрубок не превышает 80%.

10. Способ по п. 3, отличающийся тем, что механическое легирование ведут при температурах от 0 до минус 196 градусов по Цельсию.

11. Способ по п. 3, отличающийся тем, что отношение массы углеродсодержащего материала к массе титанового порошка равняется 1 к 3,5-4,5.

12. Способ по п. 3, отличающийся тем, что перед помещением композиционных гранул в расплав алюминия или алюминиевого сплава композиционные гранулы подпрессовывают в компактные брикеты с размером не менее 4 мм.

Документы, цитированные в отчете о поиске Патент 2018 года RU2653393C1

GU DONGDONG и др
In-situ TiC particle reinforced Ti-Al matrix composites: powder preparation by mechanical alloying and selective laser melting behavior, Applied surface science, 2009, vol.255, N22, c.9230-9240
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ С НАНОРАЗМЕРНЫМИ УПРОЧНЯЮЩИМИ ЧАСТИЦАМИ 2012
  • Попов Владимир Алексеевич
RU2485196C1
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛОМАТРИЧНОГО КОМПОЗИТА 2009
  • Попов Владимир Алексеевич
RU2423539C2
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ С НАНОРАЗМЕРНЫМИ КОМПОНЕНТАМИ ДЛЯ ПРЕДОТВРАЩЕНИЯ БИООБРАСТАНИЯ 2011
  • Попов Владимир Алексеевич
  • Чернов Борис Борисович
  • Щетинина Галина Павловна
  • Нугманов Анас Масхарович
RU2456360C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ С МЕТАЛЛИЧЕСКОЙ МАТРИЦЕЙ И НАНОРАЗМЕРНЫМИ УПРОЧНЯЮЩИМИ ЧАСТИЦАМИ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2014
  • Попов Владимир Алексеевич
RU2574534C2
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛОМАТРИЧНОГО КОМПОЗИТА С НАНОРАЗМЕРНЫМИ КОМПОНЕНТАМИ 2012
  • Попов Владимир Алексеевич
RU2485195C1
CN 103589913 A, 19.02.2014
ЛИТОЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ АЛЮМИНИЕВОГО СПЛАВА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2006
  • Панфилов Александр Васильевич
  • Бранчуков Дмитрий Николаевич
  • Панфилов Алексей Александрович
  • Панфилов Александр Александрович
  • Петрунин Алексей Валерьевич
  • Чернышова Татьяна Александровна
  • Калашников Игорь Евгеньевич
  • Кобелева Любовь Ивановна
  • Болотова Людмила Константиновна
RU2323991C1

RU 2 653 393 C1

Авторы

Попов Владимир Алексеевич

Даты

2018-05-08Публикация

2017-06-23Подача