Теплоизолирующий надувной купол Российский патент 2018 года по МПК F16P1/02 F41H3/00 

Описание патента на изобретение RU2653902C1

Изобретение относится к области военной техники, такой как защита от выявления дислокации агрегатов оборонного назначения, выделяющих в процессе эксплуатации тепловую энергию (дизельные установки и т.д.) в полевых условиях.

Известен способ защиты оператора и устройство для его осуществления путем установки защитного экрана (ограждения), выполненного в виде установленных с зазором и жесткосвязанных в ряд пластин из сетки с высокой теплоотражающей способностью, расположенных в одной плоскости и перемещающихся со скоростью 30-50 колебаний в секунду с помощью вибратора [А.с. СССР №1021866, МПК F16P 1/02, 1983].

Недостатками известного устройства являются сложность конструкции, наличие вибратора, приводящее к возникновению вибрации, повышенный нагрев экрана, а также недостаточный коэффициент теплозащиты и затруднения при совмещении вибрирующего экрана с другими средствами теплозащиты, что снижает его эффективность.

Более близким к предлагаемому изобретению является панель (ограждение) для тепловой защиты объектов в условиях невесомости, содержащая герметичные ячейки, заполненные циркулирующим в них хладагентом, боковые поверхности каждой из которых примыкают к соседним ячейкам, а торцы обращены к объекту и окружающей среде, причем на боковых поверхностях и на одном из торцов внутри каждой ячейки укреплен капиллярно-пористый материал [А.с. СССР №278437, МПК В64G 1/58, В32В 3/12, опубл. 10.02.2006, Бюл. №4].

Недостатком известного устройства является невозможность использования защиты объектов военной техники от фиксации их теплового излучения из-за сложности выполнения и монтажа панели в полевых условиях, что снижает его эффективность.

Техническим результатом предлагаемого изобретения является повышение эффективности теплоизолирующего надувного купола за счет упрощения конструкции и снижения теплового излучения до допустимых значений при эксплуатации военной техники в полевых условиях.

Технический результат достигается теплоизолирующим надувным куполом, состоящим из ограждения, выполненного в виде полусферического купола с входным отверстием в вершине полусферы, составленным из соединенных между собой по длине кольцеобразных труб, кольца каждой из которых разорваны с образованием открытых торцов, диаметры каждого кольца равномерно изменяются в соответствии с изменением диаметра полусферы ограждения от диаметра кольца нижней трубы, равного диаметру сферы, до диаметра верхнего входного отверстия, торцы каждой кольцевой трубы соединены с изогнутыми также сферически трубами подающего и сбросного коллекторов, причем верхний и нижний торцы трубы подающего коллектора заглушены, верхний торец сбросного коллектора заглушен, а нижний конец снабжен выхлопным патрубком с регулировочным клапаном, снаружи ограждение покрыто каркасом, повторяющим очертания его наружной поверхности, граница соприкосновения боковых поверхностей подающего и сбросного коллекторов снаружи покрыта уплотнительной лентой, прикрепленной к наружной поверхности сбросного коллектора, при этом кольцевые трубы, наружный и сбросной коллекторы, каркас и уплотнительная лента выполнены из гибкого упругого материала, дизельный двигатель и вентилятор расположены в полости ограждения, а вентилятор соединен через напорный воздуховод с нижним участком подающего коллектора.

Предлагаемый теплоизолирующий надувной купол (ТИНК) приведен на фиг. 1-4 (фиг. 1 - общий вид, фиг. 2, 3, 4 - разрезы).

ТИНК включает ограждение 1, выполненное в виде полусферического купола с входным отверстием 2 в вершине полусферы, составленное из соединенных между собой по длине кольцеобразных труб 3, кольца каждой из которых разорваны с образованием открытых торцов (на фиг. 1-4 не показаны), диаметры каждого кольца равномерно изменяются в соответствии с изменением диаметра полусферы ограждения 1 от диаметра кольца нижней трубы 3, равного диаметру сферы, до диаметра верхнего входного отверстия 2, торцы каждой кольцевой трубы 3 соединены с изогнутыми также сферически трубами подающего 4 и сбросного 5 коллекторов, причем верхний и нижний торцы трубы подающего коллектора 4 заглушены, верхний торец сбросного коллектора 5 заглушен, а нижний конец снабжен выхлопным патрубком 6 с регулировочным клапаном 7, снаружи ограждение 1 покрыто каркасом 8, повторяющим очертания наружной поверхности ограждения 1, граница соприкосновения боковых поверхностей коллекторов 4 и 5 снаружи покрыта уплотнительной лентой 9, прикрепленной к наружной поверхности сбросного коллектора 5, при этом трубы 3, коллекторы 4 и 5, каркас 8 и лента 9 выполнены из гибкого упругого материала (например, пластмассы или резины), дизельный двигатель 10 и вентилятор 11 расположены в полости ограждения 1, а вентилятор 11 соединен через напорный воздуховод 12 с нижним участком подающего коллектора 4.

Предлагаемый теплоизолирующий надувной купол (ТИНК) работает следующим образом. Вначале производится монтаж ТИНК. Монтаж предлагаемого устройства осуществляют следующим образом. Предварительно рядом с дизельным двигателем 10 устанавливают вентилятор 11 и соединяют его с источником электроснабжения, например с пусковым аккумулятором (на фиг. 1-4 не показан), после чего устанавливают ограждение 1 ТИНК. Для этого собранное из расчетного числа труб 3, коллекторов 4, 5, прикрепленных к каркасу 8 в заводских условиях, сложенное в «гармошку», ограждение 1 ТИНК разворачивают, соединяют вентилятор 11 напорным воздуховодом 12 с подающим коллектором 4, закрывают развернутым ограждением 1 двигатель 10 и вентилятор 11 так, чтобы вентилятор 11 оказался под отверстием 2, после чего его включают в работу при закрытом регулировочном клапане 7. После заполнения воздухом труб 3 и коллекторов 4 и 5, в результате чего ограждение 1 принимает заданную форму полусферического купола, вентилятор 11 выключают, ограждение 1 перемещают на место установки и прикрепляют к поверхности (узлы крепления на фиг. 1-4 не показаны) таким образом, чтобы можно было перемещать сбросной коллектор 5 при необходимости создания щели между ним и коллектором 4. После включения в работу дизельного двигателя 10, включают вентилятор 11 и приоткрывают регулировочный клапан 7 (в полости ограждения 1 при этом создается некоторое разрежение), в результате чего начинается циркуляция воздуха в газовоздушном контуре в следующем порядке: наружный воздух из отверстия 2 поступает в полость полусферического ограждения 1 (часть воздуха из отверстия 2 поступает в компрессор двигателя 10), где смешивается с выхлопными газами из двигателя 10, образуя газовоздушную смесь, которая засасывается вентилятором 11 и подается в подающий коллектор 4, из которого газовоздушная смесь распределяется по трубам 3, проходит их и через сбросной коллектор 5 и выхлопной патрубок 6 выбрасывается в наружную атмосферу. При этом газовоздушная смесь при прохождения по трубам 3 с внутренней стороны воспринимает тепло, исходящее от выхлопных газов и поверхности двигателя 10, а с наружной стороны охлаждается за счет контакта через стенку с наружным воздухом, в результате чего температура наружной поверхности купола ограждения 1 незначительно превышает температуру наружного воздуха. После прохождения по трубам 3 и сбросному коллектору 5 газовоздушная смесь также охлаждается, в результате чего через выхлопной патрубок 6 в атмосферу поступает газовоздушная смесь с температурой, незначительно превышающей температуру наружного воздуха. Регулировку температуры наружной поверхности ограждения 1 и выбрасываемой из выхлопного патрубка 6 газовоздушной смеси производят регулировочным клапаном 7 - при большем его открытии происходит большее разбавление выхлопных газов и, соответственно, большее снижение температуры газовоздушной смеси, при меньшем открытии происходит меньшее разбавление газовоздушной смеси и, соответственно, повышение температуры газовоздушной смеси.

При этом необходимая герметичность ограждения 1 от окружающей атмосферы достигается прижатием ленты 9 к наружной поверхности подающего коллектора 4 за счет разрежения в полости ограждения 1. Сообщение полости ограждения 1 с наружной средой и добавочная подача наружного воздуха во внутрь полости ограждения 1 ТИНК осуществляется за счет перемещения закрытого лентой 9 нижнего края сбросного коллектора 5, в результате чего между ним и подающим коллектором 4 образуется щель.

Таким образом, конструкция теплоизолирующего надувного купола и использование наружного воздуха для охлаждения выхлопных газов обеспечивают упрощение конструкции, быстрый монтаж установки и значительное снижение теплового излучения при эксплуатации военной техники в полевых условиях, что снижает вероятность его фиксации сторонними наблюдателями.

Похожие патенты RU2653902C1

название год авторы номер документа
Надувной теплоизоляционный купол 2015
  • Ежов Владимир Сергеевич
  • Емельянов Сергей Геннадьевич
  • Добросердов Олег Гурьевич
  • Кобелев Николай Сергеевич
  • Семичева Наталья Евгеньевна
  • Соловьев Антон Дмитриевич
RU2630842C2
Мобильное устройство для снижения теплового излучения выхлопных газов 2017
  • Ежов Владимир Сергеевич
  • Емельянов Сергей Геннадьевич
  • Добросердов Олег Гурьевич
RU2679274C1
Теплица с полной утилизацией сбросных газов 2020
  • Ежов Владимир Сергеевич
  • Емельянов Сергей Геннадьевич
RU2748056C1
Быстровозводимый ангар на базе пневматической опалубки 2020
  • Бирюков Юрий Александрович
  • Бирюков Александр Николаевич
  • Добрышкин Евгений Олегович
  • Бирюков Дмитрий Владимирович
  • Бирюков Николай Александрович
  • Гляков Максим Юрьевич
  • Кравченко Игорь Николаевич
  • Пищалов Юрий Вячеславович
  • Роздобутько Матвей Русланович
  • Бабенко Владимир Михайлович
  • Шишковский Владимир Геннадьевич
  • Авраменко Максим Борисович
RU2747998C1
Устройство для дезодорации и обезвреживания газовых выбросов 2018
  • Ежов Владимир Сергеевич
RU2685394C1
Теплица с очисткой и комплексной утилизацией сбросных газов 2016
  • Ежов Владимир Сергеевич
RU2641747C2
Двухкупольная теплица 2019
  • Устинович Виталий Михайлович
  • Волков Виктор Сергеевич
RU2713114C1
ГАЗОВАЯ ГОРЕЛКА ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ 2000
  • Гулицкий К.Э.
  • Кичкировский М.Е.
  • Шехтман О.М.
RU2186293C2
Теплица с комплексной очисткой и утилизацией сбросных газов 2019
  • Ежов Владимир Сергеевич
RU2722626C1
СПОСОБ ХРАНЕНИЯ ЗЕРНА В ЕМКОСТИ В РЕГУЛИРУЕМОЙ ГАЗОВОЙ СРЕДЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2017
  • Ивашкин Алексей Викторович
  • Латышенок Михаил Борисович
  • Биленко Виктор Алексеевич
  • Рудомин Евгений Николаевич
  • Голубенко Михаил Иванович
RU2679053C1

Иллюстрации к изобретению RU 2 653 902 C1

Реферат патента 2018 года Теплоизолирующий надувной купол

Изобретение относится к военной технике. Теплоизолирующий надувной купол состоит из ограждения, выполненного в виде полусферического купола с входным отверстием в вершине полусферы, составленного из соединенных между собой по длине кольцеобразных труб, кольца каждой из которых разорваны с образованием открытых торцов. Диаметры каждого кольца равномерно изменяются в соответствии с изменением диаметра полусферического ограждения. Торцы каждой кольцевой трубы соединены с изогнутыми трубами подающего и сбросного коллекторов. Верхний и нижний торцы трубы подающего коллектора заглушены, верхний торец сбросного коллектора заглушен, нижний конец снабжен выхлопным патрубком с регулировочным клапаном. Снаружи ограждение покрыто каркасом, повторяющим очертания его наружной поверхности, граница соприкосновения боковых поверхностей подающего и сбросного коллекторов снаружи покрыта уплотнительной лентой, прикрепленной к наружной поверхности сбросного коллектора. Дизельный двигатель и вентилятор расположены в полости полусферического ограждения. Вентилятор соединен через напорный воздуховод с нижним участком подающего коллектора. Техническим результатом изобретения является повышение эффективности теплоизолирующего надувного купола. 4 ил.

Формула изобретения RU 2 653 902 C1

Теплоизолирующий надувной купол, содержащий ограждение, снабженное каналами для циркуляции хладагента, отличающийся тем, что в качестве хладагента используется воздух, ограждение выполнено в виде полусферического купола с входным отверстием в вершине полусферы, составленного из соединенных между собой по длине кольцеобразных труб, кольца каждой из которых разорваны с образованием открытых торцов, диаметры каждого кольца равномерно изменяются в соответствии с изменением диаметра полусферы ограждения от диаметра кольца нижней трубы, равного диаметру сферы, до диаметра верхнего входного отверстия, торцы каждой кольцевой трубы соединены с изогнутыми также сферически трубами подающего и сбросного коллекторов, причем верхний и нижний торцы трубы подающего коллектора заглушены, верхний торец сбросного коллектора заглушен, а нижний конец снабжен выхлопным патрубком с регулировочным клапаном, снаружи ограждение покрыто каркасом, повторяющим очертания его наружной поверхности, граница соприкосновения боковых поверхностей подающего и сбросного коллекторов снаружи покрыта уплотнительной лентой, прикрепленной к наружной поверхности сбросного коллектора, при этом кольцевые трубы, наружный и сбросной коллекторы, каркас и уплотнительная лента выполнены из гибкого упругого материала, дизельный двигатель и вентилятор расположены в полости ограждения, а вентилятор соединен через напорный воздуховод с нижним участком подающего коллектора.

Документы, цитированные в отчете о поиске Патент 2018 года RU2653902C1

Панель для тепловой защиты объектов 1969
  • Обухов Н.Я.
  • Шмаков В.А.
  • Северцев С.А.
  • Антипенко И.Н.
SU278437A1
ПНЕВМАТИЧЕСКАЯ СТРОИТЕЛЬНАЯ КОНСТРУКЦИЯ 2011
  • Чесноков Андрей Владимирович
RU2463421C1
US 3247627 A, 26.04.1966
Способ проверки прибора для измерения некруглости 1971
  • Гебель Иосиф Давыдович
  • Каим Лев Григорьевич
  • Нефедов Аскольд Иванович
  • Хилевич Соломон Абрамович
  • Хроленко Виктор Федорович
SU516899A1

RU 2 653 902 C1

Авторы

Ежов Владимир Сергеевич

Емельянов Сергей Геннадьевич

Добросердов Олег Гурьевич

Семичева Наталья Евгеньевна

Даты

2018-05-15Публикация

2017-04-11Подача