Предлагаемое изобретение относится к теплоэнергетике и сельскому хозяйству и может быть использовано для повышения урожайности в овощеводстве закрытого грунта совместно с очисткой и утилизацией газообразных продуктов сгорания теплоэнергетических установок и двигателей внутреннего сгорания.
Более близким к предлагаемому изобретению является устройство для очистки и комплексной утилизации дымовых газов, включающее зону обработки, соединенную с транзитным газоходом через отводной газоход, в которую входят вертикальный трубчатый теплообменник–абсорбер, состоящий из соединенных последовательно по газу в трубном пространстве сверху – вниз, воздухоподогревателя и конденсатора, который соединен по конденсату с анионитовым фильтром, а по газу с эжектором, газоходом рабочей смеси и теплицей, в крыше которой размещен дефлектор, причем межтрубное пространство воздухоподогревателя соединено с дутьевым воздуховодом, а межтрубное пространство конденсатора соединено с газоходом наружного воздуха и вентилятором [Патент РФ №2377058, МПК В 01 D 53/60, А 01G 9/18, бюл.№36, 2009].
Основным недостатком известного устройства является использование в зоне обработки трубчатых теплообменников, обусловливающее высокое аэродинамическое сопротивление установки и ее высокую стоимость, отсутствие камеры окисления, снижающее скорость окисления монооксидов азота до диоксидов, что, в конечном счете, уменьшает экономическую и экологическую эффективность известного устройства.
Более близким к предлагаемому изобретению является теплица с очисткой и комплексной утилизацией сбросных газов, включающая зону обработки, соединенную с транзитным газоходом и состоящую, из соединенных последовательно через отводной газоход, вентилятора, эжектора, камеры окисления, снабженную распределителем озоновоздушной смеси, соединенным с озонатором, и гидрозатвором, газовоздушного коллектора, соединенного через свои правую и левую ветви с корпусом теплицы, установленным на правый и левый ряды вертикальных пластинчатых теплообменников, примыкающих своими торцами к опорным стойкам, в крыше которого устроен дефлектор, при этом каждый вертикальный пластинчатый теплообменник состоит из вертикального прямоугольного корпуса с внутренней вертикальной перегородкой, которые изготовлены из прозрачного материала с высокой теплопроводностью и коррозионной стойкостью, причем вертикальная перегородка установлена с образованием нижней переточной щели, в верхней части внутренней стенки корпуса устроена горизонтальная распределительная щель, в верхней части наружной стенки корпуса вертикального пластинчатого теплообменника устроен газовоздушный штуцер, соединенный с правой или левой ветвью газовоздушного коллектора, в днище корпуса устроен штуцер слива конденсата, соединенный с правой или левой ветвью конденсатного коллектора, соединенного с камерой окисления через гидрозатвор и с анионитовым фильтром [Патент РФ №2641747, МПК В 01 D 53/60, А 01G 9/18, бюл.№3, 2018].
Основным недостатком известной теплицы является наличие сложной зоны обработки, использование вентилятора для подачи наружного воздуха, сложная конструкция теплообменников, обусловливающие высокий расход электроэнергии и стоимость установки, что, в конечном счете, усложняет конструкцию и уменьшает экономическую эффективность известного устройства.
Технической задачей предлагаемого изобретения является упрощение конструкции и повышение экономической эффективности теплицы с комплексной очисткой и утилизацией сбросных газов.
Технический результат достигается в теплице с комплексной очисткой и утилизацией сбросных газов, содержащей зону обработки, соединенную с транзитным газоходом и состоящую из соединенных последовательно через отводной газоход, снабженным, встроенным в него распределителем озоновоздушной смеси, соединенным с озонатором, газового коллектора, соединенного через свои правую и левую ветви с корпусом теплицы, установленным на правый и левый ряды вертикальных пластинчатых теплообменников, примыкающих своими торцами к опорным стойкам, в крыше которого устроена вытяжная труба с дефлектором, при этом каждый вертикальный пластинчатый теплообменник состоит из вертикального прямоугольного корпуса с нижним лотком, снабженным штуцером слива конденсата, которые изготовлены из прозрачного материала с высокой теплопроводностью и коррозионной стойкостью, причем на уровне нижней кромки через наружную сторону каждого вертикального пластинчатого теплообменника пропущен во внутрь его ряд распределительных газовых патрубков, наклоненных относительно горизонта под углом 450 и соединенных с правой и левой ветвями газового коллектора, между нижней кромкой наружной стороны каждого вертикального пластинчатого теплообменника и верхней кромкой нижнего лотка имеется горизонтальная заборная щель, ширина Δ которой регулируется регулировочной планкой, между верхней крышкой каждого вертикального пластинчатого теплообменника и верхней кромкой его внутренней стенки имеется горизонтальная распределительная щель, а штуцеры слива конденсата лотков каждого вертикального пластинчатого теплообменника соединены с правой или левой ветвью конденсатного коллектора, соединенного с анионитовым фильтром.
В основу работы предлагаемого устройства положены: особенности состава дымовых и выхлопных газов теплоэнергетических агрегатов и двигателей внутреннего сгорания, основными компонентами которых, на основании опытных данных и расчета состава продуктов сгорания, являются азот (76-82)% об., диоксид углерода(7-14)% об., водяные пары (5-17)% об., концентрация которых зависит от вида топлива и способа его сжигания [Роддатис К.Ф., Соколовский Я.Б. Справочник по котельным установкам малой производительности. – М.: Энергия, 1975, с.15]; значительное содержание кислорода в сбросных газах, обусловленное превышением фактического коэффициента избытка воздуха над теоретическим; высокая скорость кислотообразования в условиях конденсации водяных паров нитрозных газов [Олевский В. М. Производство азотной кислоты в агрегатах большой единичной мощности – М.: Химия, 1985, с.42], возможность использования азотнокислого натрия в качестве удобрения [Позин М.Е. Технология минеральных удобрений. – Л.: Химия, 1983, с. 226] и способность растений в процессе фотосинтеза усваивать диоксид углерода с выделением кислорода [Комов В. П., Шведова В. Н. Биохимия. – М.: Дрофа, 2004, с.210]. Кроме того, высота вытяжной трубы с дефлектором 10 создают в полости корпуса теплицы для воздушного потока самотягу [Ю. П. Гусев Основы проектирования котельных установок – М.: Стройиздат, 1977, с.143].
Теплица с комплексной очисткой и утилизацией сбросных газов (ТКОУСГ) изображена на фиг. 1–6 (фиг. 1–общий вид ТКОУСГ, фиг. 2,3–план и разрез теплицы, фиг. 4–узел ввода озоновоздушной смеси в сбросные газы, фиг. 5,6–общий вид и разрез ВТПО 8).
Теплица с комплексной очисткой и утилизацией сбросных газов (ТКОУСГ) содержит зону обработки, соединенную с транзитным газоходом 1 и состоящую из соединенных последовательно через отводной газоход 2, встроенный в него распределитель озоновоздушной смеси 3, выполненный в виде патрубка, соединенный с озонатором (на фиг. 1–6 не показан), газового коллектора 4, соединенного через свои правую и левую ветви с корпусом теплицы 5, установленным на правый и левый ряды 6 и 7 вертикальных пластинчатых теплообменников (ВТПО) 8, примыкающих своими торцами к опорным стойкам 9, в крыше которого устроена вытяжная труба с дефлектором 10, при этом каждый ВТПО 8 состоит из вертикального прямоугольного корпуса 11 с нижним лотком 12, снабженным штуцером слива конденсата 13, которые изготовлены из прозрачного материала с высокой теплопроводностью и коррозионной стойкостью, причем на уровне нижней кромки через наружную сторону каждого ВТПО 8 пропущен во внутрь его ряд распределительных газовых патрубков 14, наклоненных относительно горизонта под углом 450 и соединенных с правой и левой ветвями газового коллектора 4, между нижней кромкой наружной стороны каждого ВТПО 8 и верхней кромкой нижнего лотка 12 имеется горизонтальная заборная щель 15, ширина Δ которой регулируется регулировочной планкой 16 (на фиг. 1–6 узлы крепления планки 16 к ВТПО 8 не показаны), между верхней крышкой каждого ВТПО 8 и верхней кромкой его внутренней стенки имеется горизонтальная распределительная щель 17, а штуцеры слива конденсата 13 лотков 12 каждого ВТПО 8 соединены с правой или левой ветвью конденсатного коллектора 18, соединенного с анионитовым фильтром 19.
Перед началом работы ТКОУСГ предварительно на нулевой отметке осуществляется монтаж правого 6 и левого 7 рядов ВТПО 8, между опорными стойками 9, к которым крепится корпус теплицы 5 (узлы крепления на фиг. 1–6 не показаны), после чего производится монтаж остального оборудования.
Работа ТКОУСГ происходит следующим образом. Сбросные газы теплогенерирующей установки или двигателя внутреннего сгорания (ДВС) (на фиг. 1–6 не показаны), количество которых обусловлено производительностью ТОКУСГ, из транзитного газохода 1 под напором, создаваемом дымососом или ДВС, уже содержащие некоторое количество кислорода, через отводной газоход 2, попутно смешиваются с озоновоздушной смесью, подаваемой через встроенный в газопровод 2, распределитель озоновоздушной смеси, поступающей из озонатора (на фиг. 1–6 не показан), в результате чего происходит начало процесса окисления части монооксидов азота до диоксидов, после чего сбросные газы через правую и левую ветви газовоздушного коллектора 4, поступает в правый и левый ряды 6 и 7 вертикальных пластинчатых теплообменников (ВТПО) 8 через наклонные распределительные патрубки 14. В полости корпуса ВТПО 8, в результате истечения газовых струй под углом 450 происходит забор наружного воздуха через заборную щель 15, образование газовоздушной смеси и окончательное ее охлаждение наружным воздухом с наружной стороны и внутренним воздухом теплицы 8 с внутренней стороны до температуры 40–450С с образованием конденсата, стекающего вниз по стенкам ВТПО 8. При этом, в результате охлаждения, происходит окисление оставшихся монооксидов азота до высших с высокой скоростью, абсорбция их конденсатом и интенсивное кислотообразование в процессе конденсации водяных паров. Далее, окончательно очищенные и охлажденные газы, через распределительные шели 17 ВТПО 8 направляются в теплицу 5, где в результате процесса фотосинтеза диоксид углерода усваивается растениями с выделением кислорода, одновременно интенсифицируя их рост, после чего газовоздушная смесь, обогащенная кислородом, за счет разрежения, создаваемого вытяжной трубы с дефлектором 10, выбрасывается в атмосферу. Конденсат, насыщенный кислотными компонентами, из ВТПО 8 через конденсатный коллектор 18 поступает в анионитовый фильтр 19, где очищается от кислотных компонентов и направляется в конденсатный бак (на фиг. 1–6 не показан), откуда используется для подпитки котельного агрегата или ДВС. После регенерации анионита анионитового фильтра 19 раствором NaОН получают водный раствор NaNO3, который в качестве удобрения используется для повышения урожайности в теплице 5 или отправляется другому потребителю.
При этом, попутное смешение сбросных газов с озоновоздушной смесью 5 в газопроводе 2, изменение конструкции вертикальных пластинчатых теплообменников 8, являющихся как бы прозрачным фундаментом теплицы 5, в которых происходит смешение сбросных газов с наружным воздухом, охлаждение их наружным воздухом снаружи и внутренним воздухом теплицы 5 и окончательное окисление оксидов азота и абсорбция диоксидов азота образовавшимся конденсатом в них, позволяет упростить схему, конструкцию установки и снизить затраты энергии на подачу наружного воздуха.
Таким образом, предлагаемая теплица с комплексной очисткой и утилизацией сбросных газов обеспечивает упрощение конструкции устройства, что повышает экономическую эффективность установки.
название | год | авторы | номер документа |
---|---|---|---|
Теплица с очисткой и комплексной утилизацией сбросных газов | 2016 |
|
RU2641747C2 |
Теплица с полной утилизацией сбросных газов | 2020 |
|
RU2748056C1 |
Устройство для очистки и комплексной утилизации сбросных газов | 2016 |
|
RU2620798C1 |
УСТРОЙСТВО ДЛЯ ОЧИСТКИ И КОМПЛЕКСНОЙ УТИЛИЗАЦИИ ДЫМОВЫХ ГАЗОВ | 2008 |
|
RU2377058C2 |
ШАХТНАЯ МУЛЬТИБЛОЧНАЯ УСТАНОВКА ДЛЯ ОЧИСТКИ И УТИЛИЗАЦИИ ГАЗООБРАЗНЫХ ВЫБРОСОВ ТЕПЛОГЕНЕРАТОРОВ | 2010 |
|
RU2448761C1 |
Гидропонная установка | 2019 |
|
RU2714242C1 |
КОМПЛЕКСНЫЙ СПОСОБ И УСТРОЙСТВО ДЛЯ ОЧИСТКИ И УТИЛИЗАЦИИ ДЫМОВЫХ ГАЗОВ | 2003 |
|
RU2254161C1 |
Коррозионноустойчивая шахтная мультиблочная установка для очистки и утилизации дымовых газов | 2017 |
|
RU2656498C1 |
КОМПЛЕКСНЫЙ СПОСОБ И УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ДУТЬЕВОГО ВОЗДУХА И ДЫМОВЫХ ГАЗОВ | 2006 |
|
RU2331462C1 |
Комплексный горизонтальный многоступенчатый адсорбер | 2022 |
|
RU2797799C1 |
Изобретение относится к области сельского хозяйства и теплоэнергетике и может быть использовано для повышения урожайности в овощеводстве закрытого грунта совместно с очисткой и утилизацией газообразных продуктов сгорания теплоэнергетических установок и двигателей внутреннего сгорания. Теплица с комплексной очисткой и утилизацией сбросных газов содержит корпус и зону обработки, соединенную с транзитным газоходом и содержащую отводной газоход, распределитель озоновоздушной смеси, соединенный с озонатором. Корпус теплицы снабжен вытяжной трубой с дефлектором, установленный на вертикальные пластинчатые теплообменники. Каждый пластинчатый теплообменник изготовлен из прозрачного материала с высокой теплопроводностью и коррозионной стойкостью и соединен с газовым коллектором и конденсатным коллектором, соединенным с анионитовым фильтром. Распределитель озоновоздушной смеси встроен в отводной газоход. Корпус каждого вертикального пластинчатого теплообменника выполнен прямоугольным и снабжен нижним лотком со штуцером слива конденсата. На уровне нижней кромки через наружную сторону каждого вертикального пластинчатого теплообменника пропущен во внутрь его ряд распределительных газовых патрубков, наклоненных относительно горизонта под углом 45° и соединенных с правой и левой ветвями газового коллектора. Между нижней кромкой наружной стороны каждого вертикального пластинчатого теплообменника и верхней кромкой нижнего лотка выполнена горизонтальная заборная щель. Ширина Δ заборной щели регулируется регулировочной планкой и распределительными щелями. На уровне нижней кромки через наружную сторону каждого вертикального пластинчатого теплообменника пропущен во внутрь его ряд наклонных распределительных газовых патрубков, соединенных с правой и левой ветвями газового коллектора. Штуцеры слива конденсата лотков каждого вертикального пластинчатого теплообменника соединены с правой или левой ветвью конденсатного коллектора, соединенного с анионитовым фильтром. Изобретение обеспечивает достижение технического результата, заключающегося в повышении удобства эксплуатации при одновременном упрощении конструкции. 6 ил.
Теплица с комплексной очисткой и утилизацией сбросных газов, содержащая зону обработки, соединенную с транзитным газоходом, содержащую отводной газоход, распределитель озоновоздушной смеси, соединенный с озонатором, корпус теплицы, снабженный вытяжной трубой с дефлектором, установленный на вертикальные пластинчатые теплообменники, изготовленные из прозрачного материала с высокой теплопроводностью и коррозионной стойкостью и соединенные с газовым коллектором и конденсатным коллектором, соединенным с анионитовым фильтром, отличающаяся тем, что распределитель озоновоздушной смеси встроен в отводной газоход, прямоугольный корпус каждого вертикального пластинчатого теплообменника снабжен нижним лотком со штуцером слива конденсата, на уровне нижней кромки через наружную сторону каждого вертикального пластинчатого теплообменника пропущен во внутрь его ряд распределительных газовых патрубков, наклоненных относительно горизонта под углом 450 и соединенных с правой и левой ветвями газового коллектора, между нижней кромкой наружной стороны каждого вертикального пластинчатого теплообменника и верхней кромкой нижнего лотка имеется горизонтальная заборная щель, ширина которой регулируется регулировочной планкой, а между верхней крышкой каждого вертикального пластинчатого теплообменника и верхней кромкой его внутренней стенки имеется горизонтальная распределительная щель.
Теплица с очисткой и комплексной утилизацией сбросных газов | 2016 |
|
RU2641747C2 |
УСТРОЙСТВО ДЛЯ ОЧИСТКИ И КОМПЛЕКСНОЙ УТИЛИЗАЦИИ ДЫМОВЫХ ГАЗОВ | 2008 |
|
RU2377058C2 |
Устройство для очистки и комплексной утилизации сбросных газов | 2016 |
|
RU2620798C1 |
RU 2016120964 A1, 01.12.2017 | |||
Устройство для очистки и комплексной утилизации дымовых газов | 2017 |
|
RU2655127C1 |
US 4753784 A1, 28.06.1988. |
Авторы
Даты
2020-06-02—Публикация
2019-09-25—Подача