ПОДВОДНЫЙ АППАРАТ-ОХОТНИК Российский патент 2018 года по МПК B63G8/00 

Описание патента на изобретение RU2654435C1

Изобретение относится к области морской техники и может быть использовано для поиска морских объектов и физического воздействия на них.

Известно, что для поиска морских объектов используют различные измерительные устройства, основанные на регистрации в водной среде объектов и присущих им физических полей. Из-за особенностей распространения в воде различных видов энергии наиболее широкое распространение получили гидроакустические средства поиска, основанные на законах распространения в воде звука.

Считается, что первый гидроакустический прибор, измеряющий скорость течения и имеющий гидроакустический канал связи, был изобретен в России в 1881 г. офицером флота С.О. Макаровым. В годы Второй мировой войны такие приборы получили широкое распространение в качестве гидролокаторов на надводных кораблях и шумопеленгаторных станциях на подводных лодках [1 - Корж И.Г. Зарождение и развитие отечественного гидроакустического противодействия и подавления. Диссертация на соискание ученой степени кандидата технических наук. Санкт-Петербургский филиал Института истории естествознания и техники им. СИ. Вавилова РАН. СПб.: 2010. http://www.dissercat.com/content/zarozhdenie-i-razvitie-otechestvennogo-gidroakusticheskogo protivodeistviya-i-podavleniya].

В дальнейшем гидролокаторы и шумопеленгаторы были объединены в одно устройство, получившее название гидроакустической станции (ГАС). С помощью ГАС производят поиск, обнаружение, классификацию и определение координат морских целей, а также выдачу необходимых данных в приборы управления морским подводным оружием. ГАС подразделяют по принципу работы на активные или гидролокационные станции (ГЛС) и пассивные шумопеленгаторные станции (ШПС), по месту установки - на авиационные, автономные, корабельные, стационарные, по назначению - на станции классификации целей, миноискания, помех, разведки и связи [2 - Военно-морской словарь / Гл. ред. В.Н. Чернавин. М.: Воениздат, 1989. С. 102]. Дальность обнаружения подводных объектов современными ГАС может достигать 100 км и более [3 - Энциклопедия будущего адмирала. О флоте и кораблях. СПб.: ООО «Издательство «Полигон», 2003].

Сегодня на флотах ведущих морских держав применяются различные подводные аппараты, которые кроме поиска морских объектов в водной среде предназначаются и для физического воздействия на них. Это и торпеды, и мины, и необитаемые подводные аппараты, оснащаемые ГАС [4 - Сурнин В.В., Пелевин Ю.Н., Чулков В.Л. Противолодочные средства иностранных флотов. - М.: Воениздат, 1991], [5 - Автономные подводные аппараты. Материалы сайта Института проблем морских технологий Дальневосточного отделения РАН, 2002]. В целях обобщения далее под подводными аппаратами (ПА) понимаются самоходные водоизмещающие устройства, функционирующие в воде и предназначенные для поиска морских объектов и физического воздействия на них, а под морскими объектами - их цели (надводные корабли, подводные лодки или ПА).

В общем случае известные ПА имеют корпус обтекаемой цилиндрической или иной формы, средства движения и энергообеспечения, гидроакустические и телевизионные средства поиска морских объектов, навигационное оборудование, средства связи, отсек для полезной нагрузки и приборы управления. Для передачи на пункт управления информации об обнаруженных морских объектах ПА оборудуются аппаратурой связи с гидроакустическим или радиотехническим каналом [6 - Сиденко К.С., Илларионов Г.Ю. Подводная лодка и автономный необитаемый подводный аппарат // МРЭ, №2, 2008].

Наиболее близким аналогом предлагаемого ПА является торпеда, представляющая собой самодвижущийся, само- или телеуправляемый подводный снаряд, несущий боевой заряд и предназначенный для поражения кораблей и судов, а также разрушения расположенных у уреза воды гидротехнических сооружений. Конструктивно торпеда состоит из головной части, в которой размещаются заряд взрывчатого вещества, взрыватели (контактный и неконтактный), аппаратура бортовой системы управления (БСУ). В средней части торпеды находятся источник энергии и двигатель, а в хвостовой части размещаются движитель, приводы рулевых машинок и наружное оперение с рулями. Самонаводящаяся торпеда имеет автономную систему самонаведения (ССН), которая обнаруживает цель, определяет ее положение относительно продольной оси торпеды и вырабатывает необходимые команды для системы управления [7 - Военно-морской словарь / Гл. ред. В.Н. Чернавин. - М.: Воениздат, 1989. - 511 с. С. 431]. Однако использование торпеды для поражения современных надводных кораблей (НК) и подводных лодок (ПЛ) сопровождается активным противодействием с их стороны, что сильно затрудняет решение данной задачи. Уязвимость торпеды от средств противоторпедной защиты (ПТЗ) и гидроакустического подавления (ГПД) является существенным ее недостатком.

Исходя из предназначения торпед обороняющаяся сторона стремится предотвратить поражение ими своих сил (НК, судов, ПЛ и гидротехнических сооружений), для чего организует ПТЗ, представляющую собой комплекс различных технических средств и действий, снижающих угрозу поражения кораблей и портовых сооружений торпедным оружием. ПТЗ обеспечивается конструктивной защитой корабля, ограждением корабля (на стоянке), плавдока, гидротехнических сооружений противоторпедными сетями, использованием специальных буксируемых или самоходных охранителей объекта от самонаводящихся торпед и другими мерами [8 - Военно-морской словарь для юношества. Т. 2 (Буквы Н - Я) / Под общ. ред. П.А. Грищука. - М.: ДОСААФ, 1987. - 320 с., ил. С. 108-109].

Для введения противника в заблуждение относительно положения и действия своих сил или затруднения применения по ним оружия используются различные имитационные средства, представляющие собой устройства и приборы, формирующие физические поля, идентичные реальным объектам, с помощью которых имитируется перемещение объектов в пространстве. Одним из видов часто используемых морских имитационных средств является имитатор ПЛ, создающий в водной среде физические поля, характерные для ПЛ. Он может быть самоходным или дрейфующим. Самоходный имитатор ПЛ имеет двигатель, аппаратуру и органы управления, позволяющие ему осуществлять маневр по заданной программе [9 - Военно-морской словарь / Гл. ред. В.Н. Чернавин. М.: Воениздат, 1989. - 511 с. С. 159].

Для создания помех корабельным средствам подводного наблюдения и ГАС торпед, снижения эффективности их работы, отвлечения торпед от НК, судов и ПЛ на ложные направления на флотах используются средства ГПД, которые подразделяются на активные и пассивные, а по конструкции - самоходные, дрейфующие и корабельные. К активным относятся различные типы имитаторов, обеспечивающих прием сигналов гидролокационных средств, воспроизведение и излучение их в среду на частотах, соответствующих относительной динамике «наблюдателя и цели», и со значительно большей мощностью, чем воспринимаемая. К пассивным относятся различного типа противогидролокационные покрытия и газообразующие устройства, рассеивающие падающую энергию сигнала и создающие тем самым ложные цели [10 - Военно-морской словарь / Гл. ред. В.Н. Чернавин. М.: Воениздат, 1989. - 511 с. С. 405].

В качестве активных средств ПТЗ НК и ПЛ применяются устройства для вывода торпеды противника из строя. С этой целью на флотах ведущих морских держав применяют антиторпеды, имеющие сходное с торпедой устройство и имеющие меньший размер [11 - К.В. Дробот, С.Ф. Сорокин. Комплекс активной противоторпедной защиты надводных кораблей // Морская радиоэлектроника, №2(5), 2003. С. 28-29]. Так, известная американская антиторпеда Мк 46 мод.7 была разработана для активной ПТЗ авианосцев и других крупных НК в 1992 г. [12 - Барков В.А., Климов В.В. Развитие торпедного оружия США (информационный обзор). СПб.: ОАО «Концерн «Морское подводное оружие - Гидроприбор», 2009. - 44 с. С. 26]. Современные миниторпеды настолько малы, что для своего размещения не требуют много места, как, например, итальянская миниторпеда А-200 фирмы «Уайтхед», имеющая длину 883 мм, калибр 124 мм и массу 11 кг [13 - Б.А. Коптев, А.Л. Гусев. Тенденции развития зарубежного торпедного оружия // Морская радиоэлектроника, №3, 2006. С. 58-63]. Данное обстоятельство позволяет размещать миниторпеды в необходимом количестве даже на небольших носителях и использовать как эффективное противоторпедное средство.

Целью изобретения является разработка подводного аппарата, действующего автономно или управляемого дистанционно, который был бы способен на заданном маршруте атаковать обнаруженную им морскую цель, преодолев применяемые ею средства ГПД и ПТЗ.

Для достижения цели изобретения предлагается подводный аппарат-охотник, состоящий из головной части, в которой размещаются бортовая система управления и связанная с ней система самонаведения, имеющая приемоизлучающие устройства, заряд взрывчатого вещества, взрыватели: контактный и неконтактный, в средней части располагаются источник энергии и двигатель, в хвостовой части устанавливаются движитель, приводы рулевых машинок и наружное оперение с рулями. Дополнительно в головной части размещается бортовая система гидроакустического подавления средств противоторпедной защиты морского объекта противника, включающая управляющее и приемоизлучающие устройства, связанная с бортовой системой управления и приемоизлучающими устройствами системы самонаведения, а бортовая система управления дополнительно оснащается вычислительным устройством для расчета маневра по преодолению рубежа противоторпедной защиты морского объекта противника и устройством распознавания работы его средств обнаружения, гидроакустического подавления и противоторпедной защиты. Приемоизлучающие устройства бортовой системы ГПД средств ПТЗ размещаются на корпусе ПА, кроме того, могут использоваться приемоизлучающие устройства ССН ПА.

Возможный вариант исполнения предлагаемого устройства: подводный аппарат-охотник дополнительно оснащается буксируемым кабелем с приемоизлучающими устройствами, устройством его постановки и устройством предотвращения попадания кабеля в движитель. Кабель с приемоизлучающими устройствами связан с бортовой системой гидроакустического подавления средств противоторпедной защиты морского объекта противника.

Сущность изобретения поясняется чертежами (фиг. 1 и 2).

На фиг. 1 представлен общий вид предлагаемого подводного аппарата, в состав которого входят: 1 - головная часть, 2 - средняя часть, 3 - хвостовая часть, 4 - система самонаведения (ССН) с приемоизлучающими устройствами (ПИУ), 5 - заряд взрывчатого вещества, 6 - контактный взрыватель, 7 - неконтактный взрыватель, 8 - бортовая система управления (БСУ), 9 - источник энергии, 10 - двигатель, 11 - движитель, 12 - приводы рулевых машинок, 13 - наружное оперение с рулями, 14 - бортовая система ГПД с ПИУ, 15 - устройство распознавания работающих средств обнаружения, ГПД и ПТЗ морских объектов, 16 - вычислительное устройство для расчета маневра по преодолению рубежа ПТЗ морского объекта противника.

ПА-охотник, как и другие аналогичные ПА, предназначен для поиска морских объектов и дальнейшего физического воздействия на них, если они являются враждебными или их требуется вывести из строя. В процессе поиска в БСУ (8) ПА в устройстве (15) распознавания работающих средств обнаружения, ГПД и ПТЗ, используемых морскими объектами, производится постоянный анализ окружающего ПА акустического поля. При обнаружении устройством (15) работы средств ГПД или перевода средств подводного наблюдения объекта в режим поиска ПА или обнаружении выпущенных объектом торпед или антиторпед вычислительное устройство (16) рассчитывает маневр ПА по преодолению рубежа ПТЗ морского объекта для сближения с ним на требуемую дальность. Одновременно по команде БСУ включается бортовая система ГПД с ПИУ (14), с помощью которой принимаемые сигналы гидролокационных средств объекта воспроизводятся и излучаются в водную среду на частотах, соответствующих относительной динамике движения объекта и ПА, которая требуется для дезинформации объекта. Таким образом, ПА создает помехи работающим средствам подводного наблюдения объекта, а также ССН торпед или антиторпед, блокируя их и отвлекая на ложные направления.

На фиг. 2 показан ПА-охотник, оснащенный буксируемым кабелем (18) с ПИУ (19). Устройство его постановки (17) представляет собой катушку с приводом, на которую наматывается кабель, связанный с бортовой системой ГПД (14). В качестве устройств, предотвращающих попадание кабеля в движитель ПА, на фиг. 2 показаны излучатель (19) и направляющая труба (20). Работает такой ПА аналогичным образом и отличается от описанного выше только тем, что ПИУ бортовой системы ГПД вынесены за пределы ПА и размещаются на буксируемом кабеле. Такое расположение ПИУ позволяет разнести их в пространстве на большее расстояние и тем самым существенно повысить эффективность ГПД.

Техническим результатом предложенного подводного аппарата-охотника является повышение его возможностей по прорыву защитных рубежей, организуемых морскими объектами противника с помощью средств ГПД и ПТЗ, а следовательно, и эффективности применения.

Похожие патенты RU2654435C1

название год авторы номер документа
ПОДВОДНЫЙ АППАРАТ КОМПЛЕКСНЫЙ 2016
  • Новиков Александр Владимирович
  • Рогульский Олег Эдуардович
  • Фалий Святослав Анатольевич
  • Корнеев Геннадий Николаевич
RU2640598C1
Подводный аппарат 2018
  • Ким Константин Константинович
RU2696733C1
СПОСОБ ПРИМЕНЕНИЯ ВЗРЫВНЫХ ИСТОЧНИКОВ ЗВУКА 2017
  • Новиков Александр Владимирович
  • Форостяный Андрей Анатольевич
  • Ледов Алексей Вениаминович
  • Черных Андрей Валерьевич
  • Винокуров Федор Владимирович
  • Жаровов Александр Клавдиевич
RU2681964C2
СПОСОБ И УСТРОЙСТВО ПРОТИВОТОРПЕДНОЙ ЗАЩИТЫ НАДВОДНОГО КОРАБЛЯ 2015
  • Форостяный Андрей Анатольевич
  • Новиков Александр Владимирович
  • Пахомов Евгений Сергеевич
  • Ледов Алексей Вениаминович
  • Черных Андрей Валерьевич
  • Коваленок Иван Сергеевич
RU2657593C2
СПОСОБ ЗАЩИТЫ НАДВОДНОГО КОРАБЛЯ И СУДНА ОТ ПОРАЖЕНИЯ ТОРПЕДОЙ 2019
  • Новиков Александр Владимирович
  • Форостяный Андрей Анатольевич
  • Савватеев Александр Сергеевич
  • Грязнов Александр Александрович
RU2733732C1
СПОСОБ ЗАЩИТЫ НАДВОДНОГО КОРАБЛЯ ОТ ТОРПЕДЫ 2020
  • Новиков Александр Владимирович
  • Форостяный Андрей Анатольевич
RU2746085C1
Подводный аппарат с сетевым тралом 2019
  • Новиков Александр Владимирович
  • Корнеев Геннадий Николаевич
RU2724218C1
КОМПЛЕКС ТЕХНИЧЕСКИХ СРЕДСТВ ПРОТИВОТОРПЕДНОЙ ЗАЩИТЫ ПОДВОДНОЙ ЛОДКИ 2021
  • Михлин Валерий Григорьевич
  • Никущенко Дмитрий Владимирович
  • Семенов Николай Николаевич
RU2770388C1
Торпеда с водометным двигателем 2019
  • Семенов Александр Алексеевич
RU2725042C1
СПОСОБ ПРОТИВОТОРПЕДНОЙ ЗАЩИТЫ КОРАБЛЯ ИЛИ ПОДВОДНОЙ ЛОДКИ 2015
  • Новиков Александр Владимирович
  • Форостяный Андрей Анатольевич
  • Черных Андрей Валерьевич
  • Жаровов Александр Клавдиевич
RU2639298C2

Иллюстрации к изобретению RU 2 654 435 C1

Реферат патента 2018 года ПОДВОДНЫЙ АППАРАТ-ОХОТНИК

Изобретение относится к области морской техники и может быть использовано для поиска морских объектов и физического воздействия на них. Подводный аппарат-охотник состоит из головной части, в которой размещаются бортовая система управления и связанная с ней система самонаведения, заряд взрывчатого вещества, взрыватели: контактный и неконтактный. В средней части подводного аппарата располагаются источник энергии и двигатель, а в хвостовой части устанавливаются движитель, приводы рулевых машинок и наружное оперение с рулями. В головной части дополнительно размещается бортовая система гидроакустического подавления средств противоторпедной защиты морского объекта противника, включающая блок управления и приемоизлучающие устройства, связанная с бортовой системой управления и приемоизлучающими устройствами системы самонаведения. Бортовая система управления дополнительно оснащается вычислительным устройством для расчета маневра по преодолению рубежа противоторпедной защиты морского объекта противника и устройством распознавания работы его средств обнаружения, гидроакустического подавления и противоторпедной защиты. Достигается повышение возможностей по прорыву защитных рубежей, организуемых морскими объектами противника с помощью средств ГПД и ПТЗ, и эффективность в применении. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 654 435 C1

1. Подводный аппарат-охотник, состоящий из головной части, в которой размещаются бортовая система управления и связанная с ней система самонаведения, имеющая приемоизлучающие устройства, заряд взрывчатого вещества, взрыватели: контактный и неконтактный, в средней части располагаются источник энергии и двигатель, в хвостовой части устанавливаются движитель, приводы рулевых машинок и наружное оперение с рулями, отличающийся тем, что дополнительно в головной части размещается бортовая система гидроакустического подавления средств противоторпедной защиты морского объекта противника, включающая блок управления и приемоизлучающие устройства, связанная с бортовой системой управления и приемоизлучающими устройствами системы самонаведения, а бортовая система управления дополнительно оснащается вычислительным устройством для расчета маневра по преодолению рубежа противоторпедной защиты морского объекта противника и устройством распознавания работы его средств обнаружения, гидроакустического подавления и противоторпедной защиты.

2. Подводный аппарат-охотник по п.1, отличающийся тем, что дополнительно оснащается буксируемым кабелем с приемоизлучающими устройствами, устройством его постановки и устройством предотвращения попадания кабеля в движитель, кабель с излучателем связан с бортовой системой гидроакустического подавления средств противоторпедной защиты морского объекта противника.

Документы, цитированные в отчете о поиске Патент 2018 года RU2654435C1

"ВОЕННО-МОРСКОЙ СЛОВАРЬ" / Гл
ред
В.Н
ЧЕРНАВИН
- М.: ВОЕННОЕ ИЗДАТЕЛЬСТВО, 1989
Приспособление для удержания и защиты диафрагмы в микрофонной коробке 1925
  • Акционерное О-Во К. Лоренц
SU431A1
"Автономные необитаемые подводные аппараты", Д.В
ВОЙТОВ, М.: МОРКНИГА, 2015
Рогульчатое веретено 1922
  • Макаров А.М.
SU142A1
Приспособленке для расшлифовки и доводки цилиндрических поверхностей деталей, например, дизельной топливной аппаратуры 1955
  • Бородин В.П.
  • Бородин П.Л.
  • Бородин Ю.П.
SU115754A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 654 435 C1

Авторы

Новиков Александр Владимирович

Рогульский Олег Эдуардович

Фалий Святослав Анатольевич

Корнеев Геннадий Николаевич

Даты

2018-05-17Публикация

2017-01-23Подача