Описываемое изобретение относится к способам защиты надводного корабля от поражения торпедами противника.
Торпеда, как средство поражения морской цели, имеет боевую часть с зарядом взрывчатого вещества, бортовые системы управления и обнаружения цели, служащие для поиска цели, ее обнаружения и наведения на цель, сближения с ней на дистанцию срабатывания взрывного устройства, энергетическую установку, обеспечивающую работу приборов управления и органов движения, двигательную установку и движитель.
Современные торпеды различаются:
- по габаритам (калибры 324, 400, 482, 533, 550 и более мм);
- по носителям - корабельные и авиационные;
- по способу управления - самонаводящиеся и телеуправляемые;
- по назначению - противокорабельные, противолодочные, универсальные;
- по типу энергосиловой установки - тепловые и электрические [1].
Самонаводящаяся торпеда имеет автономную систему самонаведения, которая обнаруживает цель, определяет ее положение относительно продольной оси торпеды и вырабатывает необходимые команды для бортовой системы управления. В современных торпедах применяются в основном акустические системы самонаведения (ССН), которые обеспечивают наведение торпеды на цель по отраженным от нее звуковым импульсам (активные ССН) или по шуму от винтов и работающих механизмов (пассивные ССН) [1].
Системы самонаведения торпед излучают и принимают звуковые импульсы в двух плоскостях: в горизонтальной - по курсу торпеды и в вертикальной - по ее глубине. Двухплоскостные ССН используются в противолодочных и универсальных торпедах, а одноплоскостные - в противокорабельных. При этом задействуется либо горизонтальная плоскость, либо вертикальная, как, например, в подструйной ССН торпеды Мк45 F мод. 1 (США), работающей по кильватерному следу цели [2].
Телеуправляемые торпеды оснащаются системами телеуправления с проводной или оптоволоконной линиями связи. Команды управления формируются на носителе и в виде электрических сигналов подаются на торпеду. Точность наведения торпеды зависит от погрешностей работы гидроакустической станции (ГАС) носителя. При подходе к цели торпеду переводят в режим поиска цели и самонаведения [1]. Применение телеуправления обеспечивает более эффективный захват цели ССН торпеды, что позволяет проводить пуск, зная только пеленг на цель. Дальность телеуправления современных торпед составляет 10-20 км. Телеуправление бывает одностороннее и двухстороннее - с обратной связью торпеды с носителем, когда ССН торпеды используется в качестве выносной ГАС [3].
Универсальные торпеды применяются как по подводным лодкам, так и по надводным кораблям. Они оснащаются акустическими системами самонаведения в противолодочном и противокорабельном вариантах, а также системой телеуправления [1].
Таким образом, для поражения надводных кораблей в море противником могут применяться противокорабельные и универсальные торпеды с самонаведением и телеуправлением.
Для защиты надводных кораблей от поражения торпедами противника организуется их противоторпедная защита, представляющая комплекс различных технических средств и действий, снижающих угрозу их поражения торпедным оружием, и обеспечиваемая конструктивной защитой корабля, ограждением его на стоянке противоторпедными сетями, использованием специальных буксируемых или самоходных охранителей от самонаводящихся торпед и другими мерами [4]. Применяют устройства, направленные на механическое разрушение корпуса и приборов управления торпеды, создающие непреодолимое препятствие на пути ее движения, а также подавляющие работу ее системы самонаведения и телеуправления. Дополнительно используется маневр корабля для уклонения от атакующей торпеды, заключающийся в увеличении скорости хода и отвороте корабля в сторону от торпеды или на нее.
Для механического разрушения корпуса и приборов управления торпед предназначены средства огневого поражения, например, реактивные глубинные бомбы (РГБ), применяемые в реактивных противолодочных системах (РПС) (табл. 1) [5], и антиторпеды [6].
Для эффективного применения средств огневого поражения требуется своевременное обнаружение атакующей торпеды гидроакустической станцией корабля, которая на ходу из-за шума винтов и наличия кильватерного следа не наблюдает объекты на кормовых курсовых углах. Поэтому, огневое поражение торпед, атакующих корабль с кормы, практически невозможно.
Дополнительно для подавления систем самонаведения и телеуправления торпед применяют средства радиоэлектронного или гидроакустического подавления (ГПД): дрейфующие, самоходные или буксируемые приборы помех [7]. Однако они подавляют только акустические системы самонаведения торпед и не действуют против торпед с подструйной системой самонаведения. Поэтому столь необходимыми являются дополнительные способы защиты надводного корабля от торпед с подструйной системой самонаведения.
Известен способ противоторпедной защиты надводного корабля с применением глубинных бомб, сбрасываемых с кормы корабля или судна, принятый за прототип изобретения [8]. При использовании данного способа обнаруживают торпеду противника с помощью гидроакустической станции корабля, определяют ее координаты и параметры движения, выполняют кораблем противоторпедный маневр с приведением торпеды на кормовые курсовые углы и увеличением скорости хода, рассчитывают точки и время начала бомбометания, исходя из ожидаемой скорости сближения торпеды с кораблем от момента ее последнего наблюдения, после прихода корабля в расчетную точку сбрасывают с кормового бомбосбрасывающего устройства серию глубинных бомб с заданным или расчетным временным интервалом, при этом применяют глубинные бомбы, оснащенные устройством заглубления, неконтактным взрывателем, источником питания и устройством ликвидации, при расчетах времени начала сброса глубинных бомб учитывают время прихода бомб в боевое состояние после сброса, погружают глубинные бомбы на глубину, соответствующую предполагаемой глубине хода торпеды, для чего перед сбросом регулируют работу устройства заглубления, после сброса бомбы в воду сжатым газом надувают поплавок, размещенный в устройстве заглубления и соединенный с корпусом бомбы тросом, намотанным на вьюшку, трос разматывают на длину, соответствующую требуемому заглублению бомбы, подают питание на неконтактный взрыватель и приводят бомбу в боевое положение, при прохождении торпеды в радиусе действия неконтактного взрывателя подрывают заряд взрывчатого вещества глубинной бомбы, разрушают корпус торпеды и/или ее приборы управления и предотвращают попадание торпеды в корабль, с помощью устройства ликвидации через установленное время после сброса отключают неконтактный взрыватель, переводят бомбу в безопасное состояние, нарушают ее плавучесть и затапливают [8].
Однако недостатком данного способа является отсутствие контроля торпеды гидроакустической станцией корабля, так как при уклонении от торпеды, приведении ее на кормовые курсовые углы и увеличении скорости хода корабль теряет с торпедой гидроакустический контакт. При этом бомбометание по торпеде на корабле производят по расчетным данным, исходя из ожидаемой скорости сближения торпеды с кораблем от момента ее последнего наблюдения. То есть точки сброса глубинных бомб рассчитывают не для реальных, а для предполагаемых координат и параметров движения торпеды. Следовательно, эффективность данного способа защиты корабля от торпеды не может быть высокой.
Целью изобретения является разработка более эффективного способа защиты надводного корабля от торпеды противника, обеспечивающего бомбометание и маневрирование корабля без потери гидроакустического контакта с торпедой, в том числе движущейся в кильватерном следе корабля.
Для достижения цели изобретения предлагается способ защиты надводного корабля от торпеды, при котором обнаруживают торпеду противника с помощью гидроакустической станции корабля, определяют ее координаты и параметры движения, выполняют кораблем противоторпедный маневр с приведением торпеды на кормовые курсовые углы и увеличением скорости хода, рассчитывают точки и время начала бомбометания, исходя из ожидаемой скорости сближения торпеды с кораблем от момента ее последнего наблюдения, после прихода корабля в расчетную точку сбрасывают с кормового бомбосбрасывающего устройства серию глубинных бомб с заданным или расчетным временным интервалом, применяют глубинные бомбы, оснащенные устройством заглубления, неконтактным взрывателем, источником питания и устройством ликвидации, при расчетах времени начала сброса глубинных бомб учитывают время прихода бомб в боевое состояние после сброса, погружают глубинные бомбы на глубину, соответствующую глубине хода торпеды, для чего перед сбросом регулируют работу устройства заглубления бомбы, подают питание на неконтактный взрыватель и приводят бомбу в боевое положение, при прохождении торпеды в радиусе действия неконтактного взрывателя подрывают заряд взрывчатого вещества глубинной бомбы, разрушают корпус торпеды и/или ее приборы управления и предотвращают попадание торпеды в корабль, отличающийся тем, что для предотвращения потери гидроакустического контакта с торпедой и повышения эффективности защиты сбрасывают с корабля в расчетных точках радиогидроакустические буи, после их приводнения заглубляют гидрофоны и/или приемоизлучатели буев на заданную или расчетную глубину и осуществляют обследование водной среды, при обнаружении буем торпеды, следующей за кораблем, передают информацию о ее местонахождении на корабль, где производят расчеты местоположения торпеды, ее курса и скорости.
Осуществление способа защиты надводного корабля от торпеды противника показано на фиг. 1-3:
- фиг. 1 - постановка кораблем радиогидроакустических буев и обнаружение ими торпеды;
- фиг. 2 - сброс глубинных бомб в расчетных точках и их заглубление;
- фиг. 3 - приближение торпеды к защитному заграждению.
Цифрами на фиг. 1-3 обозначены: 1 - надводный корабль; 2 - спутный или кильватерный след надводного корабля; 3 - торпеда; 4 - траектория наведения торпеды на корабль; 5 - спутный или кильватерный след торпеды; 6 - радиогидроакустический буй; 7 - гидрофон или приемоизлучатель радиогидроакустического буя; 8 - обнаружение торпеды гидрофоном или приемоизлучателем радиогидроакустического буя; 9 - передача на корабль данных об обнаруженной торпеде; 10 - глубинная бомба; 11 - поплавок глубинной бомбы; 12 - зона действия неконтактного взрывателя глубинной бомбы, представляющая собой шар радиусом Rнв.
Техническим результатом изобретения является способ защиты надводного корабля от торпеды с применением глубинных бомб, при котором бомбометание и маневрирование корабля при уклонении от торпеды производятся без потери гидроакустического контакта с торпедой, чем обеспечивается требуемая эффективность защиты корабля, в том числе за счет уменьшения расхода средств поражения.
Источники информации
1. Торпеда. Военно-морской словарь / Гл. ред. В.Н. Чернавин. М.: Воениздат, 1989. 511 с. С. 431.
2. В.А. Барков, В.В. Климов. Развитие торпедного оружия США (информационный обзор). СПб.: ОАО «Концерн «Морское подводное оружие - Гидроприбор», 2009. 44 с. С. 24.
3. В. Куренков. Перспективы развития торпедного оружия ВМС зарубежных стран // Зарубежное военное обозрение, №1, 2008. С. 68-76. http://pentagonus.ru/publ/31-1-0-571.
4. Противоторпедная защита. Военно-морской словарь для юношества. Т. 2. (Буквы Н - Я) / Под общ. ред. П.А. Грищука. М.: ДОСААФ, 1987. 320 с, ил. С. 108-109.
5. А.В. Новиков и др. Противолодочное ракетное оружие индустриально развитых стран. Учебное пособие. СПб, ВМИ, 2002. 47 с. С. 10-16.
6. Дробот К.В., Сорокин С.Ф. Комплекс активной противоторпедной защиты // Морская радиоэлектроника, №2, 2003. С. 28-29.
7. Средства гидроакустического подавления. Военно-морской словарь / Гл. ред. В.Н. Чернавин. М.: Воениздат, 1989. 511 с. Стр. 405.
8. Патент на изобретение RU 2657593. Способ и устройство противоторпедной защиты надводного корабля / А.А. Форостяный, А.В. Новиков, Е.С. Пахомов, А.В. Ледов, А.В. Черных, И.С. Коваленок. М.: ФИПС, 2018. Бюл. №17.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЗАЩИТЫ НАДВОДНОГО КОРАБЛЯ И СУДНА ОТ ПОРАЖЕНИЯ ТОРПЕДОЙ | 2019 |
|
RU2733732C1 |
СПОСОБ И УСТРОЙСТВО ПРОТИВОТОРПЕДНОЙ ЗАЩИТЫ НАДВОДНОГО КОРАБЛЯ | 2015 |
|
RU2657593C2 |
СПОСОБ ПОРАЖЕНИЯ МОРСКОЙ ЦЕЛИ ТОРПЕДАМИ | 2019 |
|
RU2733734C2 |
СПОСОБ ПОРАЖЕНИЯ МОРСКОЙ ЦЕЛИ ТОРПЕДОЙ | 2019 |
|
RU2736660C2 |
СПОСОБ АКТИВНОЙ ЗАЩИТЫ КОРАБЛЯ ОТ ПОДВОДНЫХ И НАДВОДНЫХ ДРОНОВ | 2023 |
|
RU2826531C1 |
СПОСОБ ПОРАЖЕНИЯ МОРСКОЙ ЦЕЛИ | 2017 |
|
RU2692332C2 |
УНИВЕРСАЛЬНАЯ ПО ЦЕЛЯМ КРЫЛАТАЯ РАКЕТА И СПОСОБЫ ПОРАЖЕНИЯ ЦЕЛЕЙ | 2015 |
|
RU2622051C2 |
СПОСОБ ПОРАЖЕНИЯ МОРСКОЙ ЦЕЛИ | 2020 |
|
RU2742904C1 |
СПОСОБ ПОРАЖЕНИЯ МОРСКОЙ ЦЕЛИ ЛЕТАТЕЛЬНЫМ АППАРАТОМ | 2019 |
|
RU2730749C1 |
СПОСОБ ПОРАЖЕНИЯ ЦЕЛИ ПРОТИВОЛОДОЧНОЙ КРЫЛАТОЙ РАКЕТОЙ | 2015 |
|
RU2594314C1 |
Изобретение относится к защите надводного корабля от поражения торпедами противника. Для защиты надводного корабля от торпеды, при котором обнаруживают торпеду противника с помощью гидроакустической станции корабля. Определяют ее координаты и параметры движения, выполняют кораблем противоторпедный маневр с приведением торпеды на кормовые курсовые углы и увеличением скорости хода. Рассчитывают точки и время начала бомбометания, исходя из ожидаемой скорости сближения торпеды с кораблем от момента ее последнего наблюдения, после прихода корабля в расчетную точку сбрасывают с кормового бомбосбрасывающего устройства серию глубинных бомб с заданным или расчетным временным интервалом. Применяют глубинные бомбы, оснащенные устройством заглубления, неконтактным взрывателем, источником питания и устройством ликвидации, при расчетах времени начала сброса глубинных бомб учитывают время прихода бомб в боевое состояние после сброса, погружают глубинные бомбы на глубину, соответствующую глубине хода торпеды, для чего перед сбросом регулируют работу устройства заглубления бомбы. Подают питание на неконтактный взрыватель и приводят бомбу в боевое положение, при прохождении торпеды в радиусе действия неконтактного взрывателя подрывают заряд взрывчатого вещества глубинной бомбы. Разрушают корпус торпеды и/или ее приборы управления и предотвращают попадание торпеды в корабль. Для предотвращения потери гидроакустического контакта с торпедой и повышения эффективности защиты сбрасывают с корабля в расчетных точках радиогидроакустические буи, после их приводнения заглубляют гидрофоны и/или приемоизлучатели буев на заданную или расчетную глубину и осуществляют обследование водной среды, при обнаружении буем торпеды, следующей за кораблем, передают информацию о ее местонахождении на корабль, где производят расчеты местоположения торпеды, ее курса и скорости. Достигается эффективная защита корабля. 3 ил., 1 табл.
Способ защиты надводного корабля от торпеды, при котором обнаруживают торпеду противника с помощью гидроакустической станции корабля, определяют ее координаты и параметры движения, выполняют кораблем противоторпедный маневр с приведением торпеды на кормовые курсовые углы и увеличением скорости хода, рассчитывают точки и время начала бомбометания, исходя из ожидаемой скорости сближения торпеды с кораблем от момента ее последнего наблюдения, после прихода корабля в расчетную точку сбрасывают с кормового бомбосбрасывающего устройства серию глубинных бомб с заданным или расчетным временным интервалом, применяют глубинные бомбы, оснащенные устройством заглубления, неконтактным взрывателем, источником питания и устройством ликвидации, при расчетах времени начала сброса глубинных бомб учитывают время прихода бомб в боевое состояние после сброса, погружают глубинные бомбы на глубину, соответствующую глубине хода торпеды, для чего перед сбросом регулируют работу устройства заглубления бомбы, подают питание на неконтактный взрыватель и приводят бомбу в боевое положение, при прохождении торпеды в радиусе действия неконтактного взрывателя подрывают заряд взрывчатого вещества глубинной бомбы, разрушают корпус торпеды и/или ее приборы управления и предотвращают попадание торпеды в корабль, отличающийся тем, что для предотвращения потери гидроакустического контакта с торпедой и повышения эффективности защиты сбрасывают с корабля в расчетных точках радиогидроакустические буи, после их приводнения заглубляют гидрофоны и/или приемоизлучатели буев на заданную или расчетную глубину и осуществляют обследование водной среды, при обнаружении буем торпеды, следующей за кораблем, передают информацию о ее местонахождении на корабль, где производят расчеты местоположения торпеды, ее курса и скорости.
СПОСОБ И УСТРОЙСТВО ПРОТИВОТОРПЕДНОЙ ЗАЩИТЫ НАДВОДНОГО КОРАБЛЯ | 2015 |
|
RU2657593C2 |
Ветрокомпрессорный агрегат | 1984 |
|
SU1195042A1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКООБРАЗНЫХ МАТЕРИАЛОВ | 2004 |
|
RU2277980C2 |
СПОСОБ ЗАЩИТЫ ПОДВОДНОЙ ЛОДКИ ОТ ШИРОКОПОЛОСНОЙ МИНЫ-ТОРПЕДЫ | 2012 |
|
RU2517782C2 |
Авторы
Даты
2021-04-06—Публикация
2020-05-28—Подача