Способ оптической и температурной валидации приборов для ПЦР-исследований в режиме реального времени Российский патент 2018 года по МПК C12Q1/686 

Описание патента на изобретение RU2654571C2

1. Область техники

Изобретение относится к области медицины, молекулярной биологии и клинико-лабораторной диагностики и может быть использовано для валидации характеристик приборов для ПЦР-исследований в режиме реального времени.

2. Уровень техники

Точность установки и поддержания заданной температуры является критической для ПЦР [1]. Исследование, проведенное среди 18 лабораторий на 33 амплификаторах, показало, что воспроизводимость результатов ПЦР (в модельной, высокочувствительной к температуре, системе) в лунках приборов, не прошедших температурную калибровку, составила 66%, в то время как для калиброванных приборов она составила 88% [2]. Особенно актуальной точность измерения температуры становится при необходимости анализа кривой плавления, где требуется высокое температурное разрешение прибора.

Разработано множество подходов к контролю температуры в ПЦР-смеси. В первую очередь это термопары и платиновые резисторы, обеспечивающие иногда недостаточную точность из-за невозможности погружения их непосредственно в ПЦР-смесь. К примеру, Driftcon или MTAS (Mobile Temperature Acquisition System)(CyclerTest, Landgraaf, The Netherlands), которая использует 15 температурных зондов для калибровки амлификаторов и, по описанию производителя, позволяет калибровать амплификаторы в соответствии с требованиями ISO 17025, регламентирующими поверочные процедуры для аккредитованных лабораторий. Этот же производитель предлагает MTAS optical - снабженная светодиодами плашка с терморезисторами, специально для RT-PCR, позволяющая проводить калибровку при закрытой крышке прибора, разогрев плашки вызывает свечение диодов с хорошо известными спектрами и интенсивностью. Свет улавливается детектором амлификатора, и на основе этого строится картина равномерности температуры по блоку и чувствительности каналов. Ошибки таких неконтактных методов, тем не менее, могут достигать внушительных значений, расхождение приборной и фактической температур в реакторе до выравнивания температур с датчиком может составлять 8°С в течение 5-10 секунд [3].

Поэтому многие исследования направлены на создание неконтактных сенсоров, к примеру, предлагалось использовать для этого анализатор рамановского рассеяния [4], ЯМР [5], термографию на жидких кристаллах [6], ИК-термографию [7] и пр.

Обширные исследования посвящены использованию флуоресцентных красителей для калибровки температуры. Тут также встречаются различные подходы. Один из них, [8], заключается в использовании меченного флуорофором олигонуклеотида, конформация которого (и, соответственно, степень гашения флуоресцении нуклеотидами) является температурозависимой. Авторы [3] предлагают использовать записанную с высокой точностью кривую температурного гашения флуоресценции сульфородамина Б для калибровки температуры, авторы же [9] считают, что температурное тушение флуоресценции - слишком слабоменяющаяся величина для точных измерений, и предлагают добавлять в смесь для ПЦР неспецифичную ДНК (~1000 п. о.) и интеркалирующий краситель, определяя температуру по степени его высвобождения. Авторы также описали возможность использования двух двуцепочечных ДНК для двух температурных точек. Аналогичный метод описан в [10], где в ПЦР-смесь добавляются двухцепочечные ДНК в качестве внутреннего температурного контроля. В целом данный метод позволяет значительно увеличить равномерность температуры по термоблоку (дисперсия определяемой температуры падает с 0,16°С до 0,06°С при использовании температурного контроля для двух температур).

В статье [11] приводится сравнение чувствительности такого метода с данными, полученными с использованием физических методов детекции температуры (MTAS, Mobile Temperature Acquisition System, CyclerTest, Landgraaf, The Netherlands). Корреляция по абсолютной температуре составила r2=0,93; по охвату и «реалистичности» метода авторская методика определенно интересна тем, что аппроксимирует также влияние пластика, охватывает сразу весь термоблок и при этом весьма проста в использовании.

Также описывается использование молекулярных зондов типа «шпилька» для калибровки температуры в микрофлюидных устройствах [12, 13, 14].

В статье [13] описывается метод калибровки равномерности температуры по термоблоку с использованием олигонуклеотидного зонда типа «шпилька» и особой методики обсчета, использующей как данные по плавлению ампликона после ПЦР, так и данные плавления зонда. Плавление повторяется трижды, результаты аппроксимируются. Как итог - удалось снизить дисперсию температуры по плашке с 0,19°С до 0,06°С. Из минусов - разработанный ими температурный зонд «фонит» в канале FAM, ухудшая соотношение сигнал/шум.

В статье [14] приводят методику калибровки измерения абсолютной температуры в микрофлюидных устройствах с помощью аналогичного молекулярного зонда, предварительно промеренного на хорошем термостате и перенесенного на калибруемый прибор. То есть зонд используется как вторичный стандарт. Авторы утверждают, что добились почти полного соответствия точности измерения (±0,4°С - точность первого термостата).

На момент подачи заявки из открытых источников было известно о следующих наиболее близких аналогах.

Существующие коммерческие предложения направлены на аттестацию ПЦР-инструмента для проведения HRM (High resolution melting) анализа, используются различные подходы.

Продукт от Agilent «AriaMx HRM Calibration Plate Kit» предлагается для HRM калибровки AriaMx амплификатора производства Agilent с соответствующим ПО. Это предраскапанная 96-луночная плашка, содержащая модельную ДНК и краситель EvaGreen. По протоколу использования плашка не вскрывается и не термоциклируется, проводится непосредственно плавление.

Thermofisher предлагает предраскапанные плашки на 384 и 96 лунок, по их словам, «готовые для использования», в которых есть все реактивы для HMR и оптической Pure dye калибровки.

«MeltDoctor™ HRM Positive Control Kit» - также продукт от Thermofisher - набор для положительного контроля калибровки, содержит прямой и обратный праймеры, а также матрицу, имитирующую АА, АВ, ВВ аллели. Во всех случаях проводится ПЦР с данными реактивами. Представлены плашки 384, 96 лунок и «MeltDoctor™ HRM Calibration Standard», содержащий матрицу, праймеры, краски для смешивания с ПЦР-реагентами и раскапки по плашкам для оптической и термической калибровки.

Qiagen предлагает продукт для калибровки Rotor-Gene «Rotor-Gene Type-it HRM Discovery Kit», в набор входит модифицированная полимераза, буфер, матрица, краситель, праймеры, что также предполагает последующее проведение ПЦР.

Minerva Biolabs GmbH предлагает целый ряд наборов для калибровки различных характеристик термоциклеров. В том числе набор qPCR Cycler Check™, в который входят лиофилизированная матрица, праймеры, полимераза, нуклеотиды, зонды, меченные FAM и ROX, для различных температурных диапазонов и буфер для разведения.

Продукты от Agilent (здесь речь об поставляемом ими же наборе для HRM-анализа) и Qiagen основаны на плавлении матрицы с высвобождением красителя, отличительные черты - использование модифицированной Taq-полимеразы, способной долго сохранять активность (до 4 месяцев при +2°С, до 12 месяцев при -20°С), обеспечивать «химический» hot-start и высокую селективность без разделения смеси парафином. Также используется интеркалирующий краситель EvaGreen (описан как краситель 3-го поколения), способный образовывать комплексы как с А-Т, так и с G-C парами и не вызывать ингибирования ПЦР даже в высоких концентрациях.

Отличие продукта Thermofisher - использование другой краски «а stabilized form of the fluorescent SYTO® 9» и полимеразы «AmpliTaq Gold® 360 DNA Polymerase». Отличие полимеразы явно видно из сроков и условий хранения (60 дней при -20).

Известен патент WO 2014108446 A1 «Улучшенная калибровка плавления высокого разрешения», в котором в смесь для амплификации и дальнейшего плавления полученных ампликонов с высоким разрешением вносится один двуцепочечный зонд, одна цепь которого мечена флуорофором с максимумом эмиссии, отличающимся от максимума эмиссии интеркалирующего красителя, вторая цепь мечена гасителем флуоресценции. Полученные значения температуры плавления по 2 каналам детекции позволяют математически скорректировать наблюдаемые температуры плавления исследуемых амликонов относительно отклонения наблюдаемой температуры плавления калибровочного двуцепочечного зонда от истинной.

Известен патент РФ №145762 «Комплект мер флуоресценции», в котором Комплект позиционируется исключительно как мера флуоресценции, набор предназначен для всех приборов, мерящих флуоресценцию, в том числе ПЦР-амплификаторов с детекцией в реальном времени. Комплект представлен набором ампул с раствором натриевой соли флуоресцеина различной концентрации.

Основная отличие от других мер флуоресценции - жидкая форма изготовления, что позволяет использовать в нестандартных измерительных приборах.

Предлагаемый способ отличается от приведенного выше аналога тем, что:

1) отсутствует необходимость проведения ПЦР, а значит, использования полимеразы в комплектах, что снимает ограничения на условия хранения, а отсутствие амплификации снижает риск контаминации;

2) использование от 3 до 10 молекулярных зондов с разными (совпадающими, близкими и различающимися до 15°С) температурами плавления позволяет определять от 1 до 4 температурных характеристических точек;

3) использование от 2 до 5 каналов детекции (и соответственно флуорофоров) позволяет определять по 1 температурной характеристической точке в каждом канале.

3. Описание изобретения.

Предложен способ оптической и температурной валидации приборов для ПЦР-исследований в режиме реального времени.

Используются специфические молекулярные зонды - двуцепочечные синтетические молекулы ДНК, одна из цепей которой ковалентно связана с флуорофором, а другая - с гасителем флуоресценции, при этом флуорофор ковалентно связан с 3'-концом одной цепи двуцепочечного олигонуклеотида, а гаситель флуоресценции ковалентно связан с 5'-концом цепи двуцепочечного олигонуклеотида либо флуорофор ковалентно связан с 5'-концом одной цепи двуцепочечного олигонуклеотида, а гаситель флуоресценции ковалентно связан с 3'-концом цепи двуцепочечного олигонуклеотида.

Молекулярные зонды вносятся в каждую пробирку (лунку планшета) для ПЦР в равной концентрации. Равная концентрация флуорофоров позволяет при низкой температуре (20-45°С) детектировать фоновый, обусловленный неполным гашением флуорофора в составе молекулярного зонда, сигнал в каждой лунке термоциклера, при высокой температуре (60-96°С, конкретное значение зависит от температуры плавления каждого молекулярного зонда) наблюдать флуоресценцию зондов при полном расплавлении дуплексов. Полученные значения флуоресценции расплавленных зондов могут быть использованы для получения данных о соответствии оптических измерений и количества флуорофора для каждой пробирки в пределах термоблока и для каждого канала детекции.

Данные молекулярные зонды могут быть использованы для определения спектральных перекрестных наводок между каналами детекции (когда часть флуоресцентного сигнала из канала А попадает в соседний по спектральным характеристикам канал детекции канал Б). При этом значение коэффициента перекрестных наводок может быть получено с большой точностью.

Комбинируя зонды с различными температурами плавления и различными флуорофорами, возможно получение нескольких наборов данных за один эксперимент.

Использование нескольких (например, от 3 до 10) молекулярных зондов с разными температурами плавления позволяет определять несколько (от 3 до 10) температурных характеристических точек, что позволяет проводить валидацию температурных характеристик приборов для ПЦР-исследований в режиме реального времени.

Использование нескольких каналов детекции (и соответственно флуорофоров) позволяет определять одну и ту же характеристическую точку по 2 и более каналам детекции, повышая таким образом достоверность и точность определяемых значений.

Набор, содержащий данные молекулярные зонды, может использоваться как инструмент для проверки равномерности распределения температуры по термоблоку прибора для ПЦР-исследований в режиме реального времени, фотометрических и спектральных характеристик оптического тракта, что может быть использовано при производстве, диагностике, в том числе удаленно, и валидации.

4. Реализация изобретения

Набор содержит данные молекулярные зонды в виде растворов в отдельных пробирках или в предраскапанном планшете для ПЦР. Используются комбинации молекулярных зондов с разной температурой плавления и с разными флуорофорами.

Набор помещается в прибор для ПЦР-исследований в режиме реального времени (набор в виде отдельных пробирок требует предварительной подготовки планшета или пробирок для ПЦР для переноса в них соответствующих смесей молекулярных зондов), и запускается программа, включающая измерение флуоресценции в зависимости от температуры (кривая плавления).

Результатом расчета полученных данных являются:

1. Измеренный сигнал флуоресценции (фотометрическая зависимость);

2. Рассчитанная температура плавления (температурные характеристики);

3. Взаимное проникновение сигналов между каналами (спектральные характеристики).

Полученные данные используются для валидации приборов (точность выставляемой температуры, неравномерность температуры по термоблоку, фотометрических и спектральных характеристик оптического тракта), ремонта и обслуживания.

Список литературы

1) Novel Approach for Assessing Performance of PCR Cyclers Used for Diagnostic Testing. / D. Schoder, A. Schmalwieser, G. Schauberger, J. Hoorfar et al. // Journal of clinical microbiology. - 2005. – pp. 2724-2728.

2) Interlaboratory Study on Thermal Cycle Performance in Controlled PCR and Random Amplified Polymorphic DNA Analyses. / G.C. Saunders, J. Dukes, H.C. Parkes, J.H. Cornett // Clinical Chemistry. - 2001. – vol. 47:1. – pp. 47-55.

3) Sanford L.N., Wittwer C.T. Monitoring temperature with fluorescence during real-time PCR and melting analysis // Analytical Biochemistry. - 2013. - vol. 434. – pp. 26-33.

4) Davis KL, Liu KLK, Lañan M, Morris MD. Spatially resolved temperature measurements in electrophoresis capillaries by Raman thermometry // Anal Chem. - 1993. - vol. 65: 293-8.

5) Lacey ME, Webb AG, Sweedler JV. Monitoring temperature changes in capillary electrophoresis with nanoliter-volume NMR thermometry // Anal Chem. - 2000. - vol. 72: 4991-8.

6) Т.Н. Fung, Shih-Hui Chao. J.E. Peach, D.R. Meldrum. Liquid Crystal Thermography of an On-Chip Polymerase Chain Reaction Micro-Thermocycler // ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels, Parts A and B. - 2006. - Limerick, Ireland. - pp. 1039-1044.

7) The Use of Infrared Thermography as a Novel Approach for Real-Time Validation of PCR Thermocyclers. / H. A. Grønlund, C. Löfström, J.B. Helleskov, J. Hoorfar. - 2010. - vol. 3:2. – pp. 116-119.

8) Noncontact Temperature Measurement in Microliter-Sized Volumes Using Fluorescent-Labeled DNA Oligomers. / S. Jeon, J. Turner, S. Granick// J. Am. Chem. Soc. - 2005. - vol. 125(33). – pp. 9908-9909.

9) Novel fluorescence detection technique for non-contact temperature sensing in microchip PCR. / S. Mondai, V. Venkataraman // J. Biochem. Biophys. Methods. - 2007. - 70. – pp. 773-777.

10) Unlabeled Oligonucleotides as Internal Temperature Controls for Genotyping by Amplicon Melting. / M.T. Seipp, J.D. Durtschi, M.A. Liew, J.Williams et al. // Journal of Molecular Diagnostics. - 2007. - vol. 9:7.

11) The use of melting curves as a novel approach for validation of real-time PCR instruments. / Helmut Von Keyserling, T.Bergmann, M.Wiesel, A.M. Kaufmann // BioTechniques. - 2011. – vol. 51. - pp. 179-184.

12) Chemical and physical processes for integrated temperature control in microfluidic devices. / R.M. Guijt, A. Dodge, G. W. K. van Dedem, N.F. de Rooij et al. // Lab on a Chip. - 2003. - issure 1.

13) Molecular Beacon-Based Temperature Control and Automated Analyses for Improved Resolution of Melting Temperature Analysis Using SYBR I Green Chemistry. / C. , U. , H. Karlsson // Clinical Chemistry. - 2007. – vol. 53:1. – pp. 98-103.

14) A Microfluidic Platform Using Molecular Beacon-Based Temperature Calibration for Thermal Dehybridization of Surface-Bound DNA. / A. Dodge, G. Turcatti, I. Lawrence, N.F. de Rooij, E. Verpoorte // Anal. Chem. - 2004. - vol. 76. – pp. 1778-1787.

Похожие патенты RU2654571C2

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ В ГЕНЕ ГАЛАКТОЗО-1-ФОСФАТУРИДИЛТРАНСФЕРАЗЫ ЧЕЛОВЕКА МУТАЦИИ Q188R, RS75391579 2017
  • Кадочникова Владислава Викторовна
  • Трофимов Дмитрий Юрьевич
  • Абрамов Дмитрий Дмитриевич
  • Никифорова Алена Игоревна
RU2675324C1
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕНОТИПА ЧЕЛОВЕКА ПО ПОЛИМОРФИЗМУ В ГЕНЕ МАТРИКСНОЙ МЕТАЛЛОПРОТЕИНАЗЫ 3 (ММР3) -11715А/6А 2018
  • Кадочникова Владислава Викторовна
  • Кофиади Илья Андреевич
  • Никифорова Алёна Игоревна
  • Зобкова Гаухар Юрьевна
RU2699053C1
СПОСОБ СТАНДАРТИЗАЦИИ ДАННЫХ ПОЛИМЕРНОЙ ЦЕПНОЙ РЕАКЦИИ С РЕГИСТРАЦИЕЙ НАКОПЛЕНИЯ ПРОДУКТОВ РЕАКЦИИ ПО ФЛУОРЕСЦЕНЦИИ НЕПОСРЕДСТВЕННО ВО ВРЕМЯ РЕАКЦИИ (ПЦР "В РЕАЛЬНОМ ВРЕМЕНИ") 2006
  • Трофимов Дмитрий Юрьевич
  • Саматов Герман Альфредович
  • Семенов Павел Александрович
RU2294532C1
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕНОТИПА ЧЕЛОВЕКА ПО ПОЛИМОРФИЗМУ В ГЕНЕ ЦИТОХРОМА P450 CYP2D6∗3 (2549delA), rs35742686 2016
  • Ребриков Денис Владимирович
  • Трофимов Дмитрий Юрьевич
  • Абрамов Дмитрий Дмитриевич
  • Батенева Елена Алексеевна
RU2651770C2
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕНОТИПА ЧЕЛОВЕКА ПО ПОЛИМОРФИЗМУ В ГЕНЕ ЦИТОХРОМА P450 CYP2D6*9 (2615-2617delAAG) rs5030656 2016
  • Ребриков Денис Владимирович
  • Трофимов Дмитрий Юрьевич
  • Абрамов Дмитрий Дмитриевич
  • Батенева Елена Алексеевна
RU2651773C2
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕНОТИПА ЧЕЛОВЕКА ПО ПОЛИМОРФИЗМУ В ГЕНЕ ЦИТОХРОМА P450 CYP2D6*4 (1846G>A), RS3892097 2016
  • Ребриков Денис Владимирович
  • Трофимов Дмитрий Юрьевич
  • Абрамов Дмитрий Дмитриевич
  • Батенева Елена Алексеевна
RU2651774C2
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕНОТИПА ЧЕЛОВЕКА ПО ПОЛИМОРФИЗМУ В ГЕНЕ ЦИТОХРОМА Р450 CYP2D6*6 (1707delT) rs5030655 2016
  • Ребриков Денис Владимирович
  • Трофимов Дмитрий Юрьевич
  • Абрамов Дмитрий Дмитриевич
  • Батенева Елена Алексеевна
RU2653492C2
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕНОТИПА ЧЕЛОВЕКА ПО ПОЛИМОРФИЗМУ В ГЕНЕ МАТРИКСНОЙ МЕТАЛЛОПРОТЕИНАЗЫ ММР9-1562 С>Т (rs3918242) 2012
  • Ребриков Денис Владимирович
  • Зорина Оксана Александровна
  • Петрухина Наталия Борисовна
  • Борискина Ольга Андреевна
  • Беркутова Ирина Сергеевна
  • Аймадинова Нелли Камильевна
RU2548811C2
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕНОТИПА ЧЕЛОВЕКА ПО ПОЛИМОРФНОЙ ПОЗИЦИИ rs1613662 В ГЕНЕ GP6, КОДИРУЮЩЕМ ГЛИКОПРОТЕИН VI 2013
  • Бурменская Ольга Владимировна
  • Ребриков Денис Владимирович
  • Трофимов Дмитрий Юрьевич
RU2556808C2
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕНОТИПА ЧЕЛОВЕКА ПО ПОЛИМОРФИЗМУ В ГЕНЕ КОЛЛАГЕНА II ТИПА COL2A1 C>A (RS1635529) 2012
  • Ребриков Денис Владимирович
  • Зорина Оксана Александровна
  • Петрухина Наталия Борисовна
  • Борискина Ольга Андреевна
  • Беркутова Ирина Сергеевна
  • Аймадинова Нелли Камильевна
RU2518301C1

Реферат патента 2018 года Способ оптической и температурной валидации приборов для ПЦР-исследований в режиме реального времени

Предложенное изобретение относится к области биотехнологии. Предложен способ валидации температурных, фотометрических и спектральных характеристик приборов для ПЦР-исследований. Предложенный способ включает использование раствора с молекулярными зондами - двуцепочечными молекулами ДНК, одна из цепей которых ковалентно связана с флуорофором, а другая - с гасителем флуоресценции, которые помещают в пробирки или планшеты для ПЦР-исследований и устанавливают в прибор для ПЦР-исследований. В предложенном способе отсутствует необходимость проведения амплификации, проводится только плавление молекулярных зондов с разными температурами плавления и мониторинг зависимости сигнала флуоресценции для каждого молекулярного зонда от температуры с определением температурных характеристических точек, при этом кинетика изменения сигнала флуоресценции используется для расчета фотометрических и спектральных параметров. Предложенный способ может быть использован в биотехнологии для оптической и температурной валидации приборов для ПЦР-исследований в режиме реального времени.

Формула изобретения RU 2 654 571 C2

Способ валидации температурных, фотометрических и спектральных характеристик приборов для ПЦР-исследований, включающий использование раствора с молекулярными зондами - двуцепочечными молекулами ДНК, одна из цепей которых ковалентно связана с флуорофором, а другая - с гасителем флуоресценции, при этом флуорофор ковалентно связан с 3'-концом одной цепи двуцепочечного олигонуклеотида, а гаситель флуоресценции ковалентно связан с 5'-концом цепи двуцепочечного олигонуклеотида либо флуорофор ковалентно связан с 5'-концом одной цепи двуцепочечного олигонуклеотида, а гаситель флуоресценции ковалентно связан с 3'-концом цепи двуцепочечного олигонуклеотида, которые помещают в пробирки или планшеты для ПЦР-исследований и устанавливают в прибор для ПЦР-исследований, отличающийся тем, что отсутствует необходимость проведения амплификации, проводится только плавление молекулярных зондов с разными температурами плавления и мониторинг зависимости сигнала флуоресценции для каждого молекулярного зонда от температуры с определением температурных характеристических точек, что позволяет проводить валидацию детектирующего амплификатора по температурным характеристикам, а полученный сигнал флуоресценции полностью денатурированных молекулярных зондов - проводить валидацию фотометрических характеристик, а также включающий использование растворов, по одному раствору на каждый флуорофор, с одним молекулярным зондом, при плавлении которого фиксируется сигнал флуоресценции во всех каналах детекции и используется для валидации спектральных характеристик прибора.

Документы, цитированные в отчете о поиске Патент 2018 года RU2654571C2

WO 2014108446 A1, 17.07.2014
Способ измерения площади поперечного сечения объемных тел 1961
  • Оржевский О.Б.
SU145762A1
EP 2881725 А1, 10.06.2015
US 2008178653 A1, 31.07.2008.

RU 2 654 571 C2

Авторы

Саматов Герман Альфредович

Сергеев Илья Викторович

Маерле Артем Викторович

Рязанцев Андрей Викторович

Бабенко Михаил Андреевич

Трофимов Дмитрий Юрьевич

Даты

2018-05-21Публикация

2016-02-25Подача