КОМПРЕССОРНЫЙ ХОЛОДИЛЬНИК С ПРИНУДИТЕЛЬНЫМ ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ КОНДЕНСАТОРА Российский патент 2018 года по МПК F25D19/00 

Описание патента на изобретение RU2654816C1

Изобретение относится к холодильной технике, в частности к малым компрессионным холодильным машинам с принудительным охлаждением конденсатора, и может найти применение при разработке холодильной техники с пониженным энергопотреблением для различных условий применения: в торговле, в медицине, в быту.

Известны холодильники, содержащие холодильный шкаф, компрессионный холодильный агрегат, теплообменный конденсатор принудительного воздушного охлаждения (Гопин С.Р., Шавра В.М. Воздушные конденсаторы малых холодильных машин. - М.: ВО "Агропромиздат", 1987. - 100 с.).

В таких холодильниках конденсатор обдувается вентилятором, который потребляет электроэнергию на создание воздушного потока.

Теоретический анализ холодильного цикла показывает, что интенсификация охлаждения поверхности конденсатора улучшает теплоэнергетические показатели работы холодильного агрегата, повышает холодильный коэффициент и снижает удельное энергопотребление холодильника. В то же время затраты электроэнергии на работу вентилятора увеличивают суммарное энергопотребление системы: компрессор плюс вентилятор.

Известные холодильники, в которых используется вентилятор для охлаждения поверхности конденсатора, имеют недостаток, заключающийся в увеличенном энергопотреблении.

Известны также теплообменные аппараты компрессионных холодильников, в которых поток воздуха от вентилятора используется для охлаждения и поверхности конденсатора, и поверхности компрессора (например, патент №3,500,657 United States Patent Office F25D 17/06; F25b 29/100 John W. (US) от 17.03.1970 г. Air Conditioning Unit). В такой конструкции теплообменного аппарата поток воздуха от вентилятора охлаждает поверхность компрессора и поверхность конденсатора компрессионного холодильника. Таким образом, энергия, затрачиваемая на работу вентилятора, используется для охлаждения компрессора и для охлаждения конденсатора компрессионной холодильной машины.

Для малых компрессионных холодильных машин, в том числе для бытовых компрессионных холодильников, охлаждение поверхности компрессора положительно отражается на его технических показателях, прежде всего, в некотором уменьшении удельного энергопотребления и в увеличении ресурса работы компрессора.

Однако эффективность использования вентилятора для охлаждения компрессора и в этом случае низка, так как энергозатраты на работу вентилятора примерно равны экономии электроэнергии, обусловленной улучшением холодильного цикла.

Наиболее близким по технической сущности к заявляемому компрессионному холодильнику является устройство охлаждения конденсатора компрессионного холодильника (Патент РФ №2468307, 27.11.2012). Это решение принимается за прототип.

В этом устройстве охлаждение конденсатора компрессионного холодильника выполняется естественной конвекцией, дополненной воздействием потока воздуха от маломощного вентилятора, который получает электроэнергию от термоэлектрического преобразователя. При этом одна поверхность термоэлектрического преобразователя охлаждается холодом морозильной камеры или один из спаев термоэлектрических преобразователей размещается в морозильной камере или низкотемпературном отделении холодильного прибора, а другая поверхность термоэлектрического преобразователя нагревается теплом поверхности компрессора или другие спаи термоэлектрического преобразователя прикреплены к наиболее нагревающейся части компрессора холодильника. Вырабатываемое термоэлектрическим преобразователем электричество используется для питания маломощного вентилятора, а поток воздуха от вентилятора направлен снизу вверх вдоль поверхности вертикального конденсатора. Этот поток усиливает естественную конвекцию и увеличивает теплоотвод от поверхности конденсатора, что улучшает режим работы компрессора и снижает удельное энергопотребление компрессионного холодильника в целом.

Достоинством такого решения является обеспечение работы вентилятора без дополнительных энергозатрат. Суммарное энергопотребление системы компрессор плюс вентилятор не увеличивается, а поток воздуха от вентилятора в некоторой степени улучшает процесс конденсации хладагента, снижает удельное энергопотребление холодильника и увеличивает ресурс работы компрессора.

Недостатком такого устройства охлаждения конденсатора компрессионного холодильника является относительно малая мощность термоэлектрического преобразователя, которой недостаточно обдувающему вентилятору для обеспечения достаточного воздушного потока. Маломощный вентилятор не обеспечивает необходимый теплоотвод от поверхности конденсатора при увеличенных тепловых нагрузках (при температуре окружающего воздуха выше номинальной), а в номинальных режимах работы компрессионного холодильника его эффективность относительно мала.

При такой схеме питания вентилятора, которая используется в прототипе, увеличить мощность воздушного потока можно, например, увеличением числа термоэлектрических преобразователей, однако это приведет к увеличению себестоимости компрессионного холодильника, что также является недостатком технического решения по прототипу.

Задачей изобретения является устранение названных недостатков, а именно увеличение эффективности охлаждения конденсатора компрессионного холодильника с термоэлектрическим преобразователем и принудительным воздушным охлаждением конденсатора.

Поставленная задача решается тем, что компрессионный холодильник с принудительным воздушным охлаждением конденсатора, включающий холодильный шкаф, компрессор, терморегулятор, конденсатор, обдуваемый вентилятором, испаритель, термоэлектрический преобразователь, снабжен контролером управления, управляемым контактом, датчиком температуры окружающего воздуха, электрическим аккумулятором и розеткой для подключения внешнего потребителя электроэнергии от аккумулятора. При этом выход с термоэлектрического преобразователя подключен к электрическому аккумулятору посредством контролера управления, преимущественно постоянно, вентилятор подключен к электрическому аккумулятору посредством контролера управления через управляемый контакт, который замыкается при повышенной нагрузке на конденсатор и/или при включении компрессора и размыкается при температуре окружающего воздуха ниже предельно необходимого значения, или при пониженной тепловой нагрузке на конденсатор и/или в момент остановки компрессора.

Сущность изобретения поясняется на рис. 1.

Заявляемый компрессионный холодильник с принудительным воздушным охлаждением конденсатора состоит из следующих элементов: холодильного шкафа 1, компрессора 2, терморегулятора 3, конденсатора 4, обдуваемого вентилятором 5, испарителя 6, термоэлектрического преобразователя 7, контролера управления 8, управляемого контакта 9, датчика температуры окружающего воздуха 10, электрического аккумулятора 11, розетки для подключения внешнего потребителя электроэнергии 12. Новыми элементами в компрессионном холодильнике с принудительным охлаждением конденсатора являются: контроллер управления 8, управляемый контакт 9, датчик температуры окружающего воздуха 10, электрический аккумулятор 11, розетка для подключения внешнего потребителя электроэнергии 12 и схема соединения этих элементов. При этом аккумулятор 11 подключен к контролеру управления 8, датчик температуры окружающего воздуха 10 подключен к контроллеру управления 8. Выходным элементом контроллера 8 является управляемый контакт 9.

Контролер управления 8 используется для оценки тепловой нагрузки на холодильный агрегат и для включения/отключения вентилятора 5, обдувающего конденсатор 4, а также обеспечивает подзарядку электрического аккумулятора 11 от термоэлектрического преобразователя 7. Датчик температуры окружающего воздуха 10 подключен к контроллеру управления 8 и предназначен для определения температуры окружающего воздуха. Холодильник также снабжен дополнительной розеткой для подключения внешнего потребителя электроэнергии 12 к электрическому аккумулятору 11. Например, для подключения зарядного устройства сотового телефона.

Работает заявляемый компрессионный холодильник следующим образом. После включения компрессионного холодильника в рабочий режим одновременно с работой холодильного агрегата термоэлектрический преобразователь 7 начинает вырабатывать напряжение - термо-ЭДС. Напряжение с термоэлектрического преобразователя 7 посредством контроллера управления 8 подается на электрический аккумулятор 11, что приводит к его зарядке. При выходе компрессионного холодильника на рабочий режим - циклическую работу компрессора, в зависимости от тепловой нагрузки на холодильный агрегат, например, от температуры окружающего воздуха, измеряемого датчиком температуры окружающего воздуха 10, контактом 9 под управлением контроллера 8, включается или отключается вентилятор 5, запитанный от электрического аккумулятора 11. При низкой тепловой нагрузке, например при относительно не высокой температуре окружающего воздуха (20-25°C), происходит постоянная подзарядка электрического аккумулятора 11 и накопление электроэнергии, а при экстремальных нагрузках на холодильный агрегат, эта энергия используется для вентилятора 5, который обдувает поверхность конденсатора 4. Также накопленная аккумулятором электроэнергия может использоваться для других задач функционирования компрессионного холодильника, для которых необходим источник электроэнергии, включая внутренние и внешние светодиодные элементы и различные системы управления основными и дополнительными функциями компрессионного холодильника или для подключения внешних маломощных потребителей электроэнергии посредством розетки.

В период номинальных режимов работы холодильника термоэлектрический преобразователь 7 вырабатывает электричество, которое накапливается и сохраняется в аккумуляторе 11. При повышенной нагрузке на холодильный агрегат, например, когда холодильный шкаф 1 загружается теплыми продуктами, или двери холодильного шкафа находятся в открытом состоянии, или повышается температура окружающего воздуха, которая измеряется датчиком 10, контроллером 8, посредством контакта 9, включается вентилятор 5 и выполняется обдув поверхности конденсатора 4.

В такой схеме электропитания мощность вентилятора 5 может быть увеличена до уровня, соответствующего эффективному охлаждению поверхности конденсатора 4 при повышенной тепловой нагрузке на холодильный агрегат. Питание вентилятора 5, обдувающего конденсатор 4, может быть регулируемым и использоваться рационально, адекватно изменяющейся нагрузке на холодильный агрегат. При полной зарядке аккумулятора 11 контроллер управления 8 может отключать электрический аккумулятор 11 от термоэлектрического преобразователя 7 для уменьшения разрядки аккумулятора. Контроллер содержит программу сравнения фактической температуры окружающего воздуха, измеряемую датчиком температуры окружающего воздуха 10 с номинальной, которая устанавливается на контролере как базовая и которая зависит от модели и класса холодильника.

Достоинством заявляемого компрессионного холодильника с принудительным охлаждением конденсатора является то, что охлаждение конденсатора 4 вентилятором 5 может осуществляться эффективно в период увеличенной тепловой нагрузки на него. При этом мощность вентилятора 5 может быть увеличена в 2-3 раза по сравнению с мощностью вентилятора в холодильнике по прототипу.

Мощность вентилятора 5 зависит от мощности холодильника и размеров конденсатора 4.

Возможность использовать вентилятора для охлаждения конденсатора большей мощности в заявляемом холодильнике обеспечивается тем, что в период стоянки компрессора 2 термоэлектрический преобразователь 7 работает и заряжает электрический аккумулятор 11. В цикле работы агрегата компрессионного холодильника компрессор 2 включается и отключается, при этом в период его работы проявляется наибольшая тепловая нагрузка на конденсатор 4. Например, при температуре окружающего воздуха 25…28C° и работающем компрессоре 2 температура поверхности конденсатора 4 составляет 40-50C°. В период стоянки компрессора 2 тепловая нагрузка на конденсатор 4 минимальна и после остановки компрессора 2 относительно быстро опускается до температуры окружающего воздуха. Необходимости в работе вентилятора 5 в этот период, как правило, нет. Наибольшее количество теплоты от поверхности конденсатора 4 отводится в период работы компрессора 2, поэтому наиболее рационально использовать обдув поверхности компрессора 2 вентилятором 5 именно в этот период. Достоинством данного устройства также является то, что электроэнергия, затрачиваемая на работу вентилятора 5, охлаждающего конденсатор 4, не потребляется из сети и не увеличивает удельное энергопотребление компрессионного холодильника. При экстремальных режимах его работы, когда необходимо охлаждать конденсатор 4 в большей степени, электрический аккумулятор 11, введенный в состав компрессионного холодильника, обеспечивает возможность работы более мощного вентилятора 5, в результате чего снижаются перегрузки на подсистемы холодильного агрегата, увеличивается ресурс его работы и увеличивается интенсивность охлаждения конденсатора 4. Интенсивное охлаждение конденсатора 4 снижает удельное энергопотребление холодильника.

Похожие патенты RU2654816C1

название год авторы номер документа
УСТРОЙСТВО ОХЛАЖДЕНИЯ КОНДЕНСАТОРА КОМПРЕССИОННОГО ХОЛОДИЛЬНИКА 2010
  • Лемешко Михаил Александрович
  • Русляков Дмитрий Викторович
  • Пахнюк Владимир Анатольевич
  • Соколов Дмитрий Вячеславович
RU2468307C2
Способ повышения энергоэффективности холодильников 2015
  • Сучилин Владимир Алексеевич
  • Максимов Александр Васильевич
  • Сумзина Лариса Владимировна
  • Бурцева Людмила Александровна
RU2630813C2
СПОСОБ РАСШИРЕНИЯ ТЕМПЕРАТУРНОГО ДИАПАЗОНА РАБОТЫ КОМПРЕССИОННОГО ХОЛОДИЛЬНИКА 2011
  • Сальников Владимир Григорьевич
  • Сальников Александр Владимирович
  • Погребняков Сергей Борисович
RU2472077C1
БЫТОВОЙ ХОЛОДИЛЬНЫЙ ПРИБОР С ПОДВИЖНЫМ КОНДЕНСАТОРОМ 2016
  • Лемешко Михаил Александрович
  • Кожемяченко Александр Васильевич
  • Романов Павел Витальевич
  • Фомин Юрий Григорьевич
  • Никишин Владислав Викторович
RU2626944C1
БЫТОВОЙ ХОЛОДИЛЬНИК С ПОДВИЖНЫМ КОНДЕНСАТОРОМ 2014
  • Лемешко Михаил Александрович
  • Кожемяченко Александр Васильевич
  • Урунов Салават Рашидович
RU2570533C1
СПОСОБ ОХЛАЖДЕНИЯ ГЕРМЕТИЧНОГО КОМПРЕСОРНО-КОНДЕНСАТОРНОГО АГРЕГАТА КОМПРЕССИОННОГО ХОЛОДИЛЬНОГО ПРИБОРА 2012
  • Лемешко Михаил Александрович
  • Петросов Сергей Петрович
  • Корниенко Филипп Вячеславович
  • Аристархов Владимир Александрович
  • Кривоносов Юрий Павлович
  • Рабичев Евгений Александрович
RU2511804C2
СПОСОБ ОХЛАЖДЕНИЯ КОНДЕНСАТОРА КОМПРЕССИОННОГО ХОЛОДИЛЬНИКА 2013
  • Лемешко Михаил Александрович
  • Кожемяченко Александр Васильевич
  • Рукасевич Владимир Владимирович
  • Шерстюков Виталий Владимирович
  • Романова Маргарита Игоревна
  • Дейнека Иннеса Григорьевна
RU2521424C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ КОМПРЕССИОННОГО БЫТОВОГО ХОЛОДИЛЬНОГО ПРИБОРА 2013
  • Кожемяченко Александр Васильевич
  • Лемешко Михаил Александрович
  • Петросов Сергей Петрович
  • Рукасевич Владимир Владимирович
  • Фомин Юрий Григорьевич
RU2525058C1
УСТРОЙСТВО ХОЛОДИЛЬНОГО АГРЕГАТА БЫТОВОГО КОМПРЕССИОННОГО ХОЛОДИЛЬНИКА 1999
  • Бескоровайный А.В.
  • Романович Ж.А.
  • Кожемяченко А.В.
  • Петросов С.П.
RU2162576C2
СПОСОБ ОХЛАЖДЕНИЯ КОНДЕНСАТОРА КОМПРЕССИОННОГО ХОЛОДИЛЬНИКА 2010
  • Лемешко Михаил Александрович
  • Петросов Сергей Петрович
  • Кожемяченко Александр Васильевич
  • Алехин Сергей Николаевич
  • Лалетин Вячеслав Игоревич
  • Корниенко Филипп Вячеславович
  • Петросов Роман Сергеевич
  • Лемешко Александр Михайлович
RU2458291C2

Иллюстрации к изобретению RU 2 654 816 C1

Реферат патента 2018 года КОМПРЕССОРНЫЙ ХОЛОДИЛЬНИК С ПРИНУДИТЕЛЬНЫМ ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ КОНДЕНСАТОРА

Изобретение относится к холодильной технике, в частности к малым компрессионным холодильным машинам с принудительным охлаждением конденсатора, и может найти применение при разработке холодильной техники с пониженным энергопотреблением для различных условий применения: в торговле, в медицине, в быту. Компрессионный холодильник с принудительным воздушным охлаждением конденсатора включает холодильный шкаф, компрессор, терморегулятор, испаритель, конденсатор, обдуваемый вентилятором, испаритель, термоэлектрический преобразователь, снабжен контролером управления, управляемым контактом, датчиком температуры окружающего воздуха, электрическим аккумулятором и розеткой для подключения внешнего потребителя электроэнергии от аккумулятора. Использование данного изобретения обеспечивает увеличение эффективности охлаждения холодильника. 1 ил.

Формула изобретения RU 2 654 816 C1

Компрессионный холодильник с принудительным воздушным охлаждением конденсатора, включающий холодильный шкаф, компрессор, терморегулятор, конденсатор, обдуваемый вентилятором, испаритель, термоэлектрический преобразователь, отличающийся тем, что снабжен контролером управления, управляемым контактом, датчиком температуры окружающего воздуха, электрическим аккумулятором и розеткой для подключения внешнего потребителя электроэнергии от аккумулятора таким образом, что выход с термоэлектрического преобразователя подключен к электрическому аккумулятору посредством контролера управления, преимущественно постоянно, а вентилятор подключен к электрическому аккумулятору посредством контролера управления через управляемый контакт, который замыкается при повышенной нагрузке на конденсатор и/или при включении компрессора и размыкается при температуре окружающего воздуха ниже предельно необходимого значения, или при пониженной тепловой нагрузке на конденсатор и/или в момент остановки компрессора.

Документы, цитированные в отчете о поиске Патент 2018 года RU2654816C1

US 20050039483 A1, 24.02.2005
ЭЛЕКТРОХРОМНОЕ УСТРОЙСТВО И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2019
  • Подшибякин Виталий Алексеевич
  • Шепеленко Евгений Николаевич
RU2711654C1
СПОСОБ ОХЛАЖДЕНИЯ ГЕРМЕТИЧНОГО КОМПРЕСОРНО-КОНДЕНСАТОРНОГО АГРЕГАТА КОМПРЕССИОННОГО ХОЛОДИЛЬНОГО ПРИБОРА 2012
  • Лемешко Михаил Александрович
  • Петросов Сергей Петрович
  • Корниенко Филипп Вячеславович
  • Аристархов Владимир Александрович
  • Кривоносов Юрий Павлович
  • Рабичев Евгений Александрович
RU2511804C2

RU 2 654 816 C1

Авторы

Лемешко Михаил Александрович

Башняк Сергей Ефимович

Урунов Салават Рашидович

Кожемяченко Александр Васильевич

Гавлицкий Александр Иванович

Фисунов Александр Владимирович

Романов Павел Витальевич

Даты

2018-05-22Публикация

2017-05-22Подача