ТЕПЛОИЗОЛИРОВАННАЯ КОЛОННА Российский патент 2018 года по МПК E21B36/00 

Описание патента на изобретение RU2655263C1

Изобретение относится к нефтяной и газовой промышленности, в частности для добычи нефти или газа в районах с многолетнемерзлыми породами, и может быть использовано в других отраслях при изоляции труб для транспортировки теплоносителей.

Известно термоизолирующее направление, используемое при забуривании скважины в районах многолетней мерзлоты для предотвращения ее растепления, состоящее из сборно-разборных секций, содержащих внутреннюю и наружную коаксиальные трубы, межтрубное пространство между которыми заполнено теплоизолирующим материалом (Патент РФ №158353 U1, дата приоритета 28.09.2015, дата публикации 27.12.2015, авторы: Жилин А.С. и др., RU).

Недостатком известного термоизолирующего направления скважины является низкая эффективность его использования в летний период из-за вероятности растепления околосвайного пространства в связи с отсутствием возможности управления тепловым потоком в системе скважина - многолетнемерзлая порода.

Известна насосно-компрессорная труба с вакуумной теплоизоляцией, содержащая внутреннюю и наружную трубы, коаксиально соединенные друг с другом в торцах вакуумно-плотным швом с образованием кольцевого межтрубного зазора, при этом в зазоре создан вакуум и расположена изоляция, где концы внутренней трубы выполнены с образованием конического раструба, контактирующего с соответствующими концами наружной трубы, изоляция выполнена в виде экрана с отражающей поверхностью, расположенного с зазором между стенками внутренней и наружной труб, а в стенке наружной трубы выполнено отверстие, в которое ввернута пробка, содержащая барометрический датчик (Патент РФ №123822 U1, дата приоритета 18.09.2012, дата публикации 10.01.2013, авторы: Заряев И.А. и др., RU).

Недостатком этого аналога является использование вакуумной теплоизоляции, которая в случае разгерметизации не сможет уменьшить тепловой поток скважины.

Известна труба теплообменника, содержащая оребрение в виде проволочной пружины, навитой по спирали, причем оребрение расположено на наружной и внутренней поверхностях трубы, оребрение на внутренней поверхности трубы выполнено из спирали, расположенной на каркасе (Патент РФ №2200925 С1, дата приоритета 15.03.2000, дата публикации 20.03.2003, автор Митюхин Ф.П., UA).

Данное устройство предназначено для использования в теплообменных аппаратах в энергетике и не позволяет управлять тепловыми потоками в скважине.

Наиболее близким по технической сущности является теплоизолированная колонна, включающая цельную с высаженными профилированными концами внутреннюю трубу, наружную трубу, которая перед монтажом сжата вдоль оси на 9-12 мм, имеет на концах конусно-упорную резьбу и снабжена седлом и клапаном, на многослойной экранной изоляции размещены центрирующие кольца, между слоями многослойной экранной изоляции размещен газопоглотитель, в межтрубном пространстве создан вакуум, при этом муфта навернута на наружные трубы, а уплотнительная втулка снабжена канавкой и поджимает профилированные концы внутренней трубы к наружной трубе (Патент РФ №2129202 С1, дата приоритета 12.08.1997, дата публикации 20.04.1999, авторы Кудинов В.И., Богомольный Е.И. и др., RU, прототип).

Недостатком прототипа также является использование вакуумной теплоизоляции, которая в случае разгерметизации не сможет уменьшить тепловой поток скважины, и невозможность управления тепловым потоком в межтрубном пространстве скважины.

Технической проблемой изобретения является повышение эффективности теплоизоляции скважин для предотвращения оттаивания многолетнемерзлой породы, включая летний период, путем управления тепловым потоком и его уменьшения в межтрубном пространстве скважины, а в случае необходимости нагрева ее межтрубного пространства, так как нередки случаи обратного промерзания многолетнемерзлой породы, что приводит к смятию обсадных колонн.

Для решения технической проблемы предложена теплоизолированная колонна, включающая коаксиально расположенные наружную и внутреннюю трубы с теплоизоляцией между ними и муфты, причем наружная труба установлена с возможностью компенсации линейных расширений. Согласно изобретению новым является то, что теплоизолированная колонна выполнена с возможностью управления тепловыми потоками внутри скважины, при этом в межтрубном пространстве наружной и внутренней труб установлены термоэлектрические элементы, обмотанные проволокой или лентой для их фиксации относительно внутренней трубы, концы внутренней и наружной труб смещены относительно друг друга и соединены с помощью переходника, который снабжен кабельным разъемом для питания термоэлектрических элементов и соединен наружным резьбовым соединением с муфтой, при этом конец внутренней трубы, выступающий над торцом наружной трубы, и концевая часть наружной трубы объединены переходником посредством разъемного соединения.

Согласно изобретению наружная труба выполнена в виде проволочной или ленточной навивки из теплопроводного материала.

Согласно изобретению наружная труба выполнена из секций теплопроводных труб с компенсатором линейных расширений между ними, а в межтрубном пространстве наружной и внутренней труб установлены центрирующие кольца.

Сущность изобретения поясняется чертежами. На фиг. 1 схематично изображена теплоизолированная колонна, где наружная труба выполнена в виде проволочной или ленточной навивки из теплопроводного материала; на фиг. 2 - разрез А-А на фиг. 1, где представлены термоэлектрические элементы; на фиг. 3 - разрез Б-Б на фиг. 1, где отображен кабельный разъем переходника; на фит.4 показана теплоизолированная колонна, в которой наружная труба выполнена из секций теплопроводных труб с компенсатором линейных расширений между ними; на фиг. 5 - выносной элемент А на фиг. 4, где указано размещение металлической проволоки или ленты для фиксирования термоэлектрического элемента относительно внутренней трубы.

Теплоизолированная колонна, изображенная на фит.1, содержит внутреннюю трубу 1 и коаксиально расположенную по отношению к ней наружную трубу 2 в виде проволочной или ленточной навивки из теплопроводного материала, например алюминия. Между внутренней и наружной трубами образовано межтрубное пространство, в котором расположен теплоизоляционный материал 3 с низкой теплопроводностью, например в виде пенополиуретановой скорлупы, и установлены термоэлектрические элементы 4 с проводами 5 для подвода электрического питания (фиг. 2). В качестве термоэлектрических элементов могут быть использованы, например, элементы Пельтье (http://www.chipdip.ru/catalog-show/thermoelectric-modules/, дата просмотра 04.05.2017). Концы внутренней 1 и наружной 2 труб смещены относительно друг друга и соединены с помощью переходника 6, который снабжен кабельным разъемом 7 для питания термоэлектрических элементов 4 по проводам 5 (фиг. 3) и резьбовым соединениям на верхнем конце для монтирования муфты 8. При этом конец внутренней трубы, выступающий над торцом наружной трубы, и конец наружной трубы объединены переходником 6 посредством разъемного соединения, причем внутренняя труба 1 соединена с переходником с помощью, например, резьбового соединения, а наружная труба 2 соединена с помощью посадки с натягом.

Теплоизолированная колонна для управления тепловыми потоками в скважине, показанная на фиг. 1, изготавливается и работает следующим образом.

На внутреннюю трубу 1 устанавливают по высоте термоэлектрические элементы 4 с проводами 5 и теплоизоляционный материал 3 в виде пенополиуретановых скорлуп, затем на них наматывается проволока или лента внахлест из теплопроводного материала, образующая наружную трубу 2. Наружная труба из проволочной или ленточной навивки 2 выполняет функцию кожуха, компенсатора линейных расширений и фиксирует термоэлектрические элементы 4 относительно внутренней трубы 1. Далее на верхний конец внутренней трубы 1 посредством резьбового соединения накручивается переходник 6, который наружным концом ввинчивается на наружную трубу 2 из проволоки или ленты без зазоров между ними, образуя посадку с натягом. После этого кабельный разъем 7 соединяется с проводами 5 термоэлектрических элементов 4.

В процессе работы через кабельный разъем 7 по проводам 5 к термоэлектрическим элементам 4 подается необходимое значение электрического тока и напряжения для управления тепловым потоком в межтрубном пространстве скважины. Термоэлектрические элементы 4 охлаждают поверхность наружной трубы 2 и нагревают внутреннюю трубу 1.

Приведенный пример реализации изобретения является наиболее простым в изготовлении, экономичным и потому наиболее предпочтительным.

Теплоизолированная колонна, изображенная на фиг. 4, также является примером возможной реализации изобретения. Указанная теплоизолированная колонна содержит внутреннюю трубу 1 и наружную трубу 2 из секций теплопроводящих труб с установленными между ними компенсаторами линейных расширений 9, например, в виде гофрированной диафрагмы с наполнителем 10. В межтрубном пространстве наружной и внутренней труб расположена теплоизоляция 3 и по высоте установлены термоэлектрические элементы 4 с проводами 5 для подвода электрического питания, обмотанные тонкой металлической проволокой или лентой 11 для жесткого фиксирования их относительно внутренней трубы 1, а также установлены центрирующие кольца 12 для обеспечения точной посадки наружной трубы относительно внутренней и могут быть изготовлены из пластика. Концы внутренней 1 и наружной 2 труб, как и в первом примере, смещены относительно друг друга и соединены с помощью переходника 6, который снабжен кабельным разъемом 7 для питания термоэлектрических элементов 4 по проводам 5 и резьбовым соединениям на верхнем конце для монтирования муфты 8. При этом конец внутренней трубы, выступающий над торцом наружной трубы, и конец наружной трубы объединены переходником 6 посредством разъемного соединения, например резьбового соединения или соединения посадкой с натягом.

Теплоизолированная колонна для управления тепловыми потоками в скважине, показанная на фиг. 4, изготавливается и работает следующим образом.

На нижнем конце внутренней трубы 1 посредством резьбового соединения накручивается переходник 6 с кабельным разъемом 7. Далее устанавливаются секция теплоизоляционного материала на внутреннюю трубу 1 с проводами 5 и накручивается путем резьбового соединения секция наружной трубы 2, а на другом ее конце ввинчивается с помощью разъемного соединения, например резьбового соединения, компенсатор линейных расширений 9. Кольцевое пространство между компенсатором линейных расширений и внутренней трубы заполняется наполнителем 10, например теплоизоляционной пеной. Далее на внутреннюю трубу по высоте устанавливаются центрирующие кольца 12, теплоизоляционный материал 3, термоэлектрические элементы 4 с проводами 5 путем последовательного чередования. Термоэлектрические элементы фиксируются относительно внутренней трубы с помощью тонкой проволоки или ленты 11, например алюминиевой (фиг. 5). Далее монтируется секция наружной трубы 2 и соединяется с компенсатором линейных расширений 9 путем разъемного соединения, так чтобы центрирующие кольца 12, теплоизоляционный материал 3, термоэлектрические элементы 4 с проводами 5 располагались в кольцевом пространстве. Таким образом, собирается теплоизолированная колонна требуемой высоты. В конце сборки на верхе торца внутренней трубы посредством резьбового соединения накручивается переходник 6 с кабельным разъемом 7. Переходник 6 фиксирует с помощью резьбового соединения наружную трубу 2 относительно внутренней 1. Далее кабельный разъем 7 соединяется с проводами 5 термоэлектрических элементов 4. В конце с обеих сторон теплоизолированной колонны на резьбовое соединение переходников 6 монтируются муфты 8.

В процессе работы через кабельный разъем 7 по проводам 5 к термоэлектрическим элементам 4 подается необходимое значение электрического тока и напряжения для управления тепловым потоком в межтрубном пространстве скважины. Термоэлектрические элементы 4 охлаждают поверхность наружной трубы 2 и нагревают внутреннюю трубу 1.

При необходимости в обоих примерах, изменив направление подачи электрического тока и напряжения на термоэлектрические элементы, можно регулировать режимы нагревания и охлаждения межтрубного пространства скважины.

Теплоизолированную колонну для управления тепловыми потоками внутри скважины можно монтировать на действующих и строящихся скважинах в районах с многолетнемерзлой породой, что позволит предотвратить их оттаивание и увеличит срок эксплуатации скважин.

Достигаемый изобретением технический результат заключается в расширении арсенала технических средств, в повышении эффективности теплоизоляции скважин и в расширении функциональных возможностей путем управления тепловым потоком и его уменьшения в межтрубном пространстве скважины, для предотвращения оттаивания многолетнемерзлой породы, или, в случае необходимости, нагрева межтрубного пространства скважины.

Похожие патенты RU2655263C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ТЕРМОИЗОЛЯЦИИ СКВАЖИН В МНОГОЛЕТНЕМЁРЗЛЫХ ПОРОДАХ 2016
  • Павлова Прасковья Леонидовна
  • Кондрашов Петр Михайлович
RU2625830C1
УСТРОЙСТВО ДЛЯ ТЕПЛОИЗОЛЯЦИИ СКВАЖИНЫ В МНОГОЛЕТНЕМЕРЗЛЫХ ПОРОДАХ 2012
  • Колосов Виктор Владимирович
  • Бирих Руслан Александрович
  • Павлова Прасковья Леонидовна
  • Лунев Александр Сергеевич
RU2500880C1
СПОСОБ ПОЛУЧЕНИЯ СВЕРХКРИТИЧЕСКОГО ДИОКСИДА УГЛЕРОДА В СКВАЖИНЕ ДЛЯ ДОБЫЧИ ТРУДНОИЗВЛЕКАЕМЫХ ЗАПАСОВ НЕФТИ 2022
  • Павлова Прасковья Леонидовна
  • Башмур Кирилл Александрович
RU2792276C1
ТЕРМОИЗОЛИРУЮЩЕЕ НАПРАВЛЕНИЕ 2019
  • Голубов Артём Сергеевич
RU2718765C1
СПОСОБ ПОЛУЧЕНИЯ БИОТОПЛИВА 2022
  • Павлова Прасковья Леонидовна
  • Башмур Кирилл Александрович
  • Бухтояров Владимир Викторович
RU2796392C1
НАСОСНО-КОМПРЕССОРНАЯ ТРУБА С ТЕПЛОИЗОЛЯЦИОННЫМ ПОКРЫТИЕМ 2018
  • Гуйбер Отто
  • Коломийченко Олег Васильевич
  • Клинков Николай Николаевич
  • Корнелис Кооле
  • Ничипоренко Вячеслав Михайлович
  • Чернов Анатолий Александрович
RU2704405C1
Конструкция скважины 1989
  • Мрочко Николай Акимович
  • Сотула Леонид Федорович
  • Шульга Анатолий Михайлович
SU1717797A1
СЕКЦИЯ ТЕПЛОИЗОЛИРОВАННОЙ КОЛОННЫ 2011
  • Четвериков Сергей Геннадьевич
  • Трутнев Николай Владимирович
  • Грехов Александр Игоревич
  • Тихонцева Надежда Тахировна
  • Лефлер Михаил Наумович
  • Пышминцев Игорь Юрьевич
  • Кузнецов Владимир Иванович
  • Копылов Петр Леонидович
  • Кривошеев Андрей Александрович
  • Черепанов Всеволод Владимирович
  • Гафаров Наиль Анатольевич
  • Чернухин Владимир Иванович
  • Меньшиков Сергей Николаевич
  • Морозов Игорь Сергеевич
  • Дашков Роман Юрьевич
  • Рекин Сергей Александрович
  • Щербаков Борис Юрьевич
  • Быков Аркадий Петрович
  • Емельянов Юрий Федорович
  • Черных Илья Викторович
  • Филиппов Андрей Геннадьевич
RU2487228C1
Способ изготовления термоизолированной обсадной колонны и обсадная колонна, выполненная этим способом 2017
  • Соколова Елена Юрьевна
RU2652776C1
ТЕПЛОИЗОЛИРОВАННАЯ КОЛОННА 2002
  • Мелихов В.П.
  • Прокопенко В.Г.
  • Данюк П.З.
  • Кобозев Н.Н.
  • Слесь Д.А.
  • Резников В.И.
  • Орлов Н.Н.
  • Шитиков С.А.
  • Владимиров Н.П.
  • Евдокимов Д.А.
RU2232864C1

Иллюстрации к изобретению RU 2 655 263 C1

Реферат патента 2018 года ТЕПЛОИЗОЛИРОВАННАЯ КОЛОННА

Изобретение относится к нефтяной и газовой промышленности, в частности для добычи нефти или газа в районах с многолетнемерзлыми породами, и может быть использовано в других отраслях при изоляции труб для транспортировки теплоносителей. Теплоизолированная колонна включает коаксиально расположенные наружную и внутреннюю трубы с теплоизоляцией между ними и муфты. Причем наружная труба установлена с возможностью компенсации линейных расширений. При этом теплоизолированная колонна выполнена с возможностью управления тепловыми потоками внутри скважины. При этом в межтрубном пространстве наружной и внутренней труб установлены термоэлектрические элементы, обмотанные проволокой или лентой для их фиксации относительно внутренней трубы. Концы внутренней и наружной труб смещены относительно друг друга и соединены с помощью переходника, который снабжен кабельным разъемом для питания термоэлектрических элементов и соединен наружным резьбовым соединением с муфтой. При этом конец внутренней трубы, выступающий над торцом наружной трубы, и концевая часть наружной трубы объединены переходником посредством разъемного соединения. Техническим результатом является расширение арсенала технических средств, повышение эффективности теплоизоляции скважин и расширение функциональных возможностей путем управления тепловым потоком и его уменьшения в межтрубном пространстве скважины, для предотвращения оттаивания многолетнемерзлой породы, или, в случае необходимости, нагрева межтрубного пространства скважины. 2 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 655 263 C1

1. Теплоизолированная колонна, включающая коаксиально расположенные наружную и внутреннюю трубы с теплоизоляцией между ними и муфты, причем наружная труба установлена с возможностью компенсации линейных расширений, отличающаяся тем, что теплоизолированная колонна выполнена с возможностью управления тепловыми потоками внутри скважины, при этом в межтрубном пространстве наружной и внутренней труб установлены термоэлектрические элементы, обмотанные проволокой или лентой для их фиксации относительно внутренней трубы, концы внутренней и наружной труб смещены относительно друг друга и соединены с помощью переходника, который снабжен кабельным разъемом для питания термоэлектрических элементов и соединен наружным резьбовым соединением с муфтой, при этом конец внутренней трубы, выступающий над торцом наружной трубы, и концевая часть наружной трубы объединены переходником посредством разъемного соединения.

2. Теплоизоляционная колонна по п. 1, отличающаяся тем, что наружная труба выполнена в виде проволочной или ленточной навивки из теплопроводного материала.

3. Теплоизоляционная колонна по п. 1, отличающаяся тем, что наружная труба выполнена из секций теплопроводных труб с компенсатором линейных расширений между ними, а в межтрубном пространстве наружной и внутренней труб установлены центрирующие кольца.

Документы, цитированные в отчете о поиске Патент 2018 года RU2655263C1

ТЕПЛОИЗОЛИРОВАННАЯ КОЛОННА 1997
  • Кудинов В.И.
  • Богомольный Е.И.
  • Завьялов М.П.
  • Багиров Рзакули Рашид Оглы
  • Просвирин А.А.
  • Марченко Л.Г.
RU2129202C1
ТЕПЛОИЗОЛИРОВАННАЯ КОЛОННА 2004
  • Багиров Рзакули Рашид Оглы
  • Завьялов Михаил Петрович
  • Кулешов Эдуар Владимирович
  • Курбанов Вагиф Вели Оглы
  • Просвирин Александр Александрович
RU2307913C2
ТЕПЛОИЗОЛИРОВАННАЯ КОЛОННА 2008
  • Емельянов Вадим Викторович
  • Коршунов Валерий Николаевич
  • Костромин Валерий Сергеевич
  • Рябоконь Александр Александрович
  • Чернухин Владимир Иванович
RU2375547C1
0
SU158353A1
US 3763931 A, 09.10.1973.

RU 2 655 263 C1

Авторы

Кондрашов Петр Михайлович

Павлова Прасковья Леонидовна

Даты

2018-05-24Публикация

2017-07-11Подача