Способ использования солнечной энергии для систем кондиционирования воздуха Российский патент 2018 года по МПК F24F5/00 F24S90/00 

Описание патента на изобретение RU2656539C1

Изобретение относится к способам получения холода в системах кондиционирования воздуха на основе использования солнечной энергии в теплый период.

Известны способы получения холода в системах кондиционирования воздуха помещений [Плотников К.В., Алифанова А.И., Семиненко А.С. Кондиционирование зданий посредством солнечной энергии. Современные наукоемкие технологии. №7, 2014. С. 59-61. Плешка М.С. Система кондиционирования микроклимата здания с использованием солнечной энергии. Дисс. на соискание ученой степени канд. техн. наук. - М., 2005. - 288 с.].

Недостатками известных способов является то, что для этой цели используется абсорбционный тепловой насос, коэффициент трансформации тепла у которого не превышает 0,6.

Известен также способ получения холода в системах кондиционирования воздуха помещений с помощью парокомпрессорной холодильной машины [Свистунов В.М., Пушняков Н.К. Отопление, вентиляция и кондиционирование воздуха объектов агропромышленного комплекса и жилищно-коммунального хозяйства. Учебник для вузов. СПб: Политехника, 2006. - 423 с. Ананьев В.А., Балуева Л.П., Гальперин А.Д. и др. Системы вентиляции и кондиционирования. Теория и практика. Уч. пособие - М.: «Евроклимат», издательство «Арина», 2000. - 416 с.].

Недостатком известного способа является то, что используется электрический привод и необходимо двойное преобразование энергии (тепловой в электрическую, а затем - электрической в холод, для чего используется электродвигатель).

Наиболее близким к предложенному способу является способ использования солнечной энергии двигателем с внешним подводом теплоты (двигателем Стерлинга) [«Двигатель с внешним подводом теплоты». Патент №2105156 от 23 июня 1995 г., РФ], в результате осуществления которого получается механическая работа. Двигатель Стерлинга более эффективен в преобразовании солнечного излучения в электроэнергию (КПД 31%), чем большинство современных фотоэлектрических элементов (в продаже элементы с КПД 14-18%, в стадии испытаний с КПД в 24-41%) и солнечных электростанций концентрационного типа (параболические желоба, башенные конструкции - КПД 16%).

Недостатками известного способа являются:

- недоиспользование теплового потенциала солнечного коллектора в летнее время;

- используется только для выработки электроэнергии (необходим электрогенератор).

Технический результат заявляемого способа заключается в увеличении коэффициента использования солнечной энергии и уменьшении арсенала технических средств для осуществления способа (отсутствие более дорогостоящих фотоэлектрических элементов, электрического преобразователя, электрического аккумулятора и электродвигателя для привода компрессора парокомпрессорной холодильной машины). Таким образом, использование солнечной энергии по предлагаемому способу эффективнее ее использования путем получения электрической энергии на фотоэлектрических панелях, а затем использования ее для привода парокомпрессорной холодильной машины, т.к. их КПД, как отмечалось ранее, ниже КПД двигателя Стерлинга.

Указанный технический результат заявляемого способа достигается за счет реализации совокупности признаков, при которых достигается новый эффект - увеличение коэффициента использования солнечной энергии в 1,2÷2,1 раза (с учетом того, что КПД двигателя Стерлинга - более 30% (а большинство современных фотоэлектрических элементов имеют КПД 14-18%), коэффициент трансформации тепла парокомпрессорной холодильной машины в зависимости от температуры сред (наружного воздуха и воздуха в помещении) - 4÷7 (при использовании абсорбционного теплового насоса, коэффициент трансформации тепла не превышает 0,6) и отсутствует двойное преобразование энергии (тепловой в электрическую с помощью электрогенератора, а затем - электрической в холод, с помощью электродвигателя, обеспечивающего работу парокомпрессорной холодильной машины) и, соответственно, уменьшается арсенал технических средств (отсутствие электрогенератора и электродвигателя).

Технический результат достигается за счет того, что в способе использования солнечной энергии для систем кондиционирования воздуха на основе солнечного коллектора, двигателя с внешним подводом теплоты, термальной скважины с теплосъемными трубами, парокомпрессорной холодильной машины, вырабатываемая солнечным коллектором тепловая энергия посредством промежуточного теплоносителя солнечного коллектора передается в двигатель с внешним подводом теплоты для выработки механической энергии, которую используют для привода парокомпрессорной холодильной машины для выработки холода для системы кондиционирования воздуха помещений, а отработанное тепло от двигателя с внешним подводом теплоты посредством теплосъемных труб отводят в термальную скважину.

В теплый период тепловую энергию, вырабатываемую солнечным коллектором, используют в двигателе с внешним подводом теплоты для выработки механической энергии, которую используют для привода парокомпрессорной холодильной машины для выработки холода для системы кондиционирования воздуха помещений. Отводимую (низкопотенциальную) теплоту от двигателя с внешним подводом теплоты отводят посредством теплосъемных труб в термальную скважину глубиной 15-25 м, имеющую высокую теплоаккумулирующую способность и относительно постоянную температуру, что будет обеспечивать максимальный КПД двигателя (на глубине 15-25 м температура грунта практически не зависит от колебаний температуры наружного воздуха).

Конкурентоспособность предложенного способа определяется целым рядом технических, экономических и социально-экологических факторов.

Технические факторы

Отличительной особенностью предлагаемого способа на основе солнечного коллектора является:

а) применение двигателя с внешним подводом теплоты, с помощью которого обеспечивают использование получаемой от солнечного коллектора механической работы для привода парокомпрессорной холодильной машины;

б) применение парокомпрессорной холодильной машины (ПКХМ), с помощью которой обеспечивают использование получаемой от двигателя с внешним подводом теплоты работы для кондиционирования помещений в теплый период.

Экономические факторы определяются единовременными капитальными затратами и снижением эксплуатационных затрат, за счет которых окупаемость капитальных затрат не более 15 лет.

Социально-экологические факторы характеризуются возможностью обеспечения более дешевым холодом систем кондиционирования воздуха, а также снижением уровня загрязнения атмосферы.

На фиг. 1 показана принципиальная схема энергетической установки для осуществления способа использования солнечной энергии для систем кондиционирования воздуха.

Схема включает в себя следующие элементы: 1 - солнечный коллектор с контуром промежуточного теплоносителя (антифриза); 2 - двигатель с внешним подводом теплоты; 3 - парокомпрессорную холодильную машину; 4 - теплосъемные трубы (с антифризом) двигателя с внешним подводом теплоты; 5 - термальную скважину, а также показаны тепловые потоки: 6 - солнечной энергии; 7 - теплоносителя контура солнечного коллектора; 8 - хладоносителя системы кондиционирования воздуха помещения.

Способ осуществляется следующим образом.

Теплоту солнечного коллектора 1 посредством теплоносителя (антифриза) контура солнечного коллектора используют для нагрева рабочего тела в двигателе с внешним подводом теплоты 2; двигатель с внешним подводом теплоты вырабатывает механическую энергию, которая используется непосредственно для привода парокомпрессорной холодильной машины 3, вырабатывающей холод для системы кондиционирования воздуха помещения (в теплый период года). Отработанную теплоту от двигателя с внешним подводом теплоты с помощью теплосъемных труб, заполненных антифризом, отводят в термальную скважину 5 глубиной 15-25 м, имеющую высокую теплоаккумулирующую способность и относительно постоянную температуру, что будет обеспечивать максимальный КПД двигателя (на глубине 15-25 м температура грунта практически не зависит от колебаний температуры наружного воздуха). Теплоноситель, отдавший свое тепло в двигателе с внешним подводом тепла, возвращается на нагрев в солнечный коллектор.

Технические характеристики эффективности предлагаемого способа, в качестве примера, определены для солнечного коллектора площадью 100 м2.

Максимальную удельную мощность солнечного коллектора при температуре наружного воздуха 20°С можно принять qmax=550 Вт/м2. Технические характеристики модуля, площадью 100 м2, используемого по предлагаемому способу: максимальная тепловая мощность солнечного коллектора - 55 кВт; среднесуточная тепловая мощность солнечного коллектора летняя (май - сентябрь) - 28,7 кВт. Тепловая мощность установки, работающей по предлагаемому способу, для системы кондиционирования воздуха в теплый период увеличивается в 1,2-2,1 раза.

Исходя из среднего потребления холода для кондиционирования офисных помещений 44 Вт/м2 [Системы вентиляции и кондиционирования. Теория и практика. Уч. Пособие. / Ананьев В.А., Балуева Л.П., Гальперин А.Д., Городов А.К., Еремин М.Ю., Звягинцева С.М., Мурашко В.П., Седых И.В.: М.: «Евроклимат», издательство «Арина», 2000. - 416 с.], возможно кондиционирование помещений площадью 720-1370 м2.

Предполагаемая область применения способа для кондиционирования воздуха на основе солнечного коллектора, двигателя с внешним подводом теплоты, парокомпрессорной холодильной машины и термальной скважины: для зданий с переменным тепловым режимом, т.е. с тепловым режимом, поддерживаемым не круглосуточно, а только в рабочее время (рыночные и торговые комплексы; санаторно-курортные комплексы; административные здания). В нерабочее время температура в помещениях такого назначения может поддерживаться на более высоком уровне от температуры, установленной нормативными документами (строительными нормами и правилами). При этом одновременно с увеличением теплопритоков в помещение в течение дня в связи с увеличением солнечной радиации, увеличивается мощность системы кондиционирования.

Вырабатываемая солнечным коллектором в холодный период года тепловая энергия может использоваться для нагрева воды в системе горячего водоснабжения.

Похожие патенты RU2656539C1

название год авторы номер документа
СПОСОБ КОМБИНИРОВАННОГО ИСПОЛЬЗОВАНИЯ АЛЬТЕРНАТИВНЫХ ИСТОЧНИКОВ ЭНЕРГИИ 2016
  • Стоянов Николай Иванович
  • Воронин Александр Ильич
  • Стоянов Арсений Геннадьевич
  • Шагров Александр Вячеславович
RU2622779C1
Гелиогеотермальный энергокомплекс 2020
  • Пашкевич Роман Игнатьевич
  • Иодис Валентин Алексеевич
  • Горбач Владимир Александрович
RU2749471C1
СПОСОБ ТЕПЛОХЛАДОСНАБЖЕНИЯ 2023
  • Марков Василий Степанович
RU2826330C1
Способ подземного аккумулирования тепла или холода 2019
  • Греш Кирилл Олегович
RU2717890C1
СПОСОБ РАБОТЫ ТЕПЛОСИЛОВОЙ ПАРОВОЙ УСТАНОВКИ 2023
  • Марков Василий Степанович
RU2812135C1
СПОСОБ ВЫРАБОТКИ МЕХАНИЧЕСКОЙ (ЭЛЕКТРИЧЕСКОЙ) ЭНЕРГИИ ПРИ ПОМОЩИ ДВИГАТЕЛЯ СТИРЛИНГА, ИСПОЛЬЗУЮЩЕГО ДЛЯ СВОЕЙ РАБОТЫ ТЕПЛО ВТОРИЧНЫХ ЭНЕРГЕТИЧЕСКИХ РЕСУРСОВ, ГЕОТЕРМАЛЬНЫХ ИСТОЧНИКОВ И СОЛНЕЧНУЮ ЭНЕРГИЮ 2008
  • Горбачёв Юрий Михайлович
RU2406853C2
СПОСОБ РАБОТЫ ПАРОГАЗОВОЙ УСТАНОВКИ 2023
  • Марков Василий Степанович
RU2812381C1
Способ работы тригенерационной установки 2020
  • Осинцев Константин Владимирович
  • Приходько Юрий Сергеевич
  • Кускарбекова Сулпан Ириковна
  • Дудкин Максим Михайлович
  • Растворов Дмитрий Владимирович
  • Хасанова Анна Валерьевна
  • Клепиков Николай Александрович
RU2748628C1
СПОСОБ КОМПЛЕКСНОГО ИСПОЛЬЗОВАНИЯ ГЕОТЕРМАЛЬНОГО ТЕПЛА С ПОМОЩЬЮ ПАРОЭЖЕКТОРНОГО ТЕПЛОВОГО НАСОСА 2011
  • Стоянов Николай Иванович
  • Воронин Александр Ильич
  • Гейвандов Иоганн Арестагесович
  • Смирнов Станислав Сергеевич
RU2528213C2
Абсорбционная холодильная установка и способ охлаждения объектов в автономном режиме в регионах с жарким климатом 2023
  • Доржиев Сергей Содномович
  • Базарова Елена Геннадьевна
  • Розенблюм Мария Игоревна
  • Жураев Иззатилла Рахматулла Угли
RU2806949C1

Иллюстрации к изобретению RU 2 656 539 C1

Реферат патента 2018 года Способ использования солнечной энергии для систем кондиционирования воздуха

Изобретение относится к способам получения холода в системах кондиционирования воздуха на основе солнечной энергии в теплый период. Предполагаемая область применения способа для кондиционирования воздуха на основе солнечного коллектора, двигателя с внешним подводом теплоты, парокомпрессорной холодильной машины и термальной скважины для зданий с переменным тепловым режимом, т.е. с тепловым режимом, поддерживаемым не круглосуточно, а только в рабочее время в рыночных и торговых комплексах, санаторно-курортных комплексах; административных зданиях. В нерабочее время температура в помещениях такого назначения может поддерживаться на более высоком уровне в теплый период от температуры, установленной нормативными документами. Теплоту солнечного коллектора посредством теплоносителя контура солнечного коллектора используют для нагрева рабочего тела в двигателе с внешним подводом теплоты; двигатель с внешним подводом теплоты вырабатывает механическую энергию, которая используется для непосредственного привода парокомпрессорной холодильной машины, вырабатывающей холод для системы кондиционирования воздуха помещения. Теплоноситель, отдавший свое тепло в двигателе, возвращается на нагрев в солнечный коллектор. Отводимую низкопотенциальную теплоту от двигателя передают посредством теплосъемных труб в теплоаккумулирующую термальную скважину глубиной 15-25 м, что будет обеспечивать максимальный КПД двигателя. 1 ил.

Формула изобретения RU 2 656 539 C1

Способ использования солнечной энергии для систем кондиционирования воздуха на основе солнечного коллектора, двигателя с внешним подводом теплоты, термальной скважины с теплосъемными трубами, парокомпрессорной холодильной машины, отличающийся тем, что вырабатываемая солнечным коллектором тепловая энергия посредством промежуточного теплоносителя солнечного коллектора передается в двигатель с внешним подводом теплоты для выработки механической энергии, которую используют для привода парокомпрессорной холодильной машины для выработки холода для системы кондиционирования воздуха помещений, а отработанное тепло от двигателя с внешним подводом теплоты посредством теплосъемных труб отводят в термальную скважину.

Документы, цитированные в отчете о поиске Патент 2018 года RU2656539C1

Развальцовка 1930
  • Шавгулидзе Е.А.
SU24406A1
Способ наплавки металла трением 1961
  • Вознесенский В.Д.
  • Заксон Р.И.
SU151929A1
КОМПОЗИЦИОННЫЙ СОСТАВ ДЛЯ ПРОИЗВОДСТВА КОНСТРУКЦИОННОГО ПРЕССОВАННОГО БРУСА 1999
  • Орлова Л.И.
  • Десятниченко А.И.
RU2151156C1
WO 2012042407 A2, 05.04.2012.

RU 2 656 539 C1

Авторы

Стоянов Арсений Геннадьевич

Шагров Александр Вячеславович

Даты

2018-06-05Публикация

2017-08-18Подача