Способ стимулирования роста растений на ранних стадиях развития воздействием электромагнитного поля крайневысокой частоты Российский патент 2018 года по МПК A01C1/06 

Описание патента на изобретение RU2657476C1

Изобретение относится к сельскому хозяйству, а именно к способам стимулирования роста растений на ранних стадиях развития путем воздействия электромагнитным излучением, и может быть использовано для предпосевной обработки семян и посадочного материала с целью стимулировать их прорастание и дальнейшее развитие.

Свойство электромагнитных полей влиять на процессы жизнедеятельности широко используется в сельском хозяйстве.

Известны способы предпосевной обработки семян с целью повышения всхожести, в которых в качестве физического фактора используют ультрафиолетовое излучение (RU 2312481, А01С 1/00, 20.12.2007, RU 2084100, А01С 1/00, 20.07.1997). Повышение всхожести незначительно.

Известен способ предпосевной обработки семян сельскохозяйственных культур путем воздействия на семена магнитного поля (RU 2261574, А01С 1/00, 10.10.2005). Эффективность способа невысока.

Известен способ предпосевной обработки посевного и посадочного материала сельскохозяйственных культур и послеуборочной обработки урожая путем воздействия низкочастотным высоковольтным импульсно-модулированным электрическим полем. Электрическое поле создают конденсатором, диэлектриком которого служат обрабатываемый материал и атмосферный воздух. Время воздействия составляет от 0,017 ч до 24 ч (RU 2487519, А01С 1/00, A01F 25/00, 20.07.2013). Способ отличается сложностью и низкой производительностью.

Известен способ стимуляции процессов жизнедеятельности биологических объектов. На объект воздействуют электромагнитным полем с одновременным пропусканием электрического тока в течение промежутка времени от 10 с до 2 ч. Величину напряженности электромагнитного поля задают в пределах 1-1000 Э (RU 2113108, A01G 7/04, А01С 1/00, 20.06.1998). Способ отличается сложностью реализации и большими энергозатратами при низкой эффективности.

Известен способ предпосевной обработки семян ячменя электромагнитным полем сверхвысокой частоты (СВЧ) с целью ускорения их прорастания и улучшения фитосанитарных свойств. Способ включает предварительное увлажнение семян водой с температурой 24°С в течение 10 мин при соотношении семена:вода = 4:1. Мощность СВЧ-поля 540 Вт, экспозиция 60-90 секунд до конечной температуры семян 46,5-52,3°С (RU 2304372, А01С 1/00, 20.08.2007). Недостатками способа являются сложность процедуры обработки, недостаточная эффективность, большие энергозатраты и узкая сфера применения, ограниченная одной культурой.

Наиболее близким к предлагаемому изобретению является способ предпосевной обработки семян горчицы электромагнитным полем сверхвысокой частоты, включающий предварительное увлажнение семян до влажности 14,5%. Обработку проводят в камере микроволновой печи при удельной мощности СВЧ-поля 1529 Вт/дм3 и экспозиции обработки 60-90 секунд до конечной температуры семян 44,5-54,75°С (RU 2373676, А01С 1/00, 27.11.2009 - прототип).

Способ-прототип позволяет повысить всхожесть семян горчицы и улучшить их фитосанитарные качества. Недостатками способа-прототипа являются большие энергозатраты и узкая сфера применения, ограниченная одной культурой.

Задачей предлагаемого изобретения является разработка способа стимулирования роста растений на ранних стадиях развития воздействием электромагнитного поля крайневысокой частоты, который обеспечит высокую эффективность обработки, позволит существенно снизить энергозатраты и расширить сферу применения способа.

Решение поставленной задачи достигается предлагаемым способом стимулирования роста растений на ранних стадиях развития воздействием электромагнитного поля, в котором семена растений или черенки картофеля обрабатывают электромагнитным полем крайневысокой частоты (КВЧ) при мощности потока излучения 0,1-5,0 мВт/см2 и экспозиции обработки 3-5 мин, при этом семена растений предварительно увлажняют.

Для увлажнения семян их замачивают в воде в течение 3-х часов при объемном соотношении семена : вода = 1:1.

КВЧ-излучение отнесено к сверхслабым воздействиям, количество поглощаемой объектом энергии мало, в то же время проведенные нами при разработке предлагаемого способа исследования показали, что эффект КВЧ-воздействия значителен.

В качестве КВЧ-излучателя использовали аппарат «Явь» с рабочей длиной волны 7,105 мм (частота 42194±10 МГц).

Предлагаемый способ был испытан в лабораторных условиях. Тест-объектами были семена: редиса (сорт 18 дней), огурца (сорт Конкурент), гороха (сорт Ранний), а также клубневые черенки картофеля сорта Удача. Увлажнение семян проводили в дистиллированной воде в течение 3-х часов. Выращивание экспериментальных растений вели в люминостате с ритмом освещения свет/темнота = 12/12 ч.

Тестирование влияния КВЧ облучения на развитие растений проводили с помощью ряда морфологических тестов, а также нами был применен неизвестный ранее способ тестирования эффективности рострегулирующего воздействия при помощи метода спектроскопии комбинационного рассеяния света (КРС). (Указанный способ является предметом отдельной заявки, поданной одновременно с данной). Спектры КРС регистрировались на спектрометре U1000, для возбуждения спектров использовали линию 514,53 нм излучения аргонового лазера. Способ тестирования при помощи метода спектроскопии КРС является высокочувствительным и может использоваться на самых ранних сроках культивирования растений.

Приводим примеры испытаний.

Пример 1.

Семена огурца замачивали в дистиллированной воде при объемном соотношении семена : вода = 1:1 в течение 3-х часов. Затем от них отделяли контрольные семена, которые не подвергали обработке КВЧ излучением, а опытные обрабатывали полем КВЧ при различной мощности потока излучения - от 0,1 мВт/см2 до 7 мВт/см2 - при равной экспозиции 5 мин. Далее все семена перекладывали в свежую дистиллированную воду при объемном соотношении семена : вода = 1:2 и через три часа изучали спектры КРС контрольной и опытной воды.

Наблюдаемые спектры КРС состоят из спектра КРС молекул воды и спектра фотолюминесценции веществ (метаболитов), которые переходят в воду из семян. Линии КРС чистой воды (1640 см-1 и 2800-3800 см-1) не изменяются со временем, и по интенсивности последней производится нормировка регистрируемых спектров, на которых фотолюминесценция метаболитов проявляется широкой полосой от 300 см-1 до 4000 см-1. Количество метаболитов характеризует степень пробуждения (прорастания) семян. В таблице 1 приведены данные анализа спектров фотолюминесценции по интегральной интенсивности (площади под кривыми спектров), полученные при различной мощности потока КВЧ излучения. (Площадь под кривой спектра фотолюминесценции пропорциональна концентрации вещества в растворе, то есть количеству метаболитов, вышедших в раствор культивирования). Площадь под кривой спектра фотолюминесценции контрольного раствора культивирования семян принималась за 100%.

Как видно из полученных данных, стимуляция развития зародыша семени, сопровождаемого выходом метаболитов в среду культивирования, наблюдается уже при малой мощности КВЧ облучения - при 0,1 мВт/см2, экспозиция 5 мин. При увеличении мощности излучения до 5 мВт/см2 (экспозиция 5 мин) эффект ростстимулирующего воздействия сохраняется, при дальнейшем увеличении мощности постепенно снижается, и при мощности потока излучения 7 мВт/см2 и выше (экспозиция 5 мин) наблюдается ингибирование процесса прорастания семян.

Исследование влияния длительности экспозиции показало, что минимальное время стимулирующего КВЧ воздействия составляет 3 мин, ингибирование наблюдается при экспозиции не менее 5 мин.

В качестве иллюстрации приводим (см. чертеж) полученные спектры КРС среды культивирования в течение 3 часов семян огурца: К - контроль, необлученные семена; 1 - семена, облученные при мощности потока КВЧ облучения 0,1 мВт/см2, экспозиция 5 мин (стимуляция прорастания); 2 - семена, облученные при мощности 7 мВт/см2, экспозиция 5 мин (торможение прорастания). Как видно из наблюдаемых спектров, спустя 3 часа после культивирования семян в воде видны существенные отличия спектров фотолюминесценции опытных и контрольных растворов: количество метаболитов в среде культивирования облученных семян по варианту стимуляции значительно превосходит данные для контрольного раствора; согласно спектру опытного раствора с семенами, облученными по варианту торможения, выход метаболитов наблюдается, но их количество меньше, чем в контроле.

Полученные результаты далее проверялись на различных растениях с использованием морфологических тестов.

Пример 2.

Семена гороха замачивали в течение 3 часов в дистиллированной воде при объемном соотношении семена : вода = 1:1 и отделяли контрольные семена. Опытные семена обрабатывали КВЧ при мощности потока излучения 5 мВт/см2, экспозиции 3 мин (опыт 2.1) и при мощности потока излучения 7 мВт/см2, экспозиции 5 мин (опыт 2.2). Контрольные и опытные семена помещали в чашки Петри для проращивания в воде при температуре +20°С. Учет длины корня у проросших семян осуществляли через 48 ч и через 56 ч от начала опыта. Результаты приведены в таблице 2.

Пример 3.

Семена гороха, воздушно-сухие и увлажненные путем замачивания в дистиллированной воде в течение 3 ч при объемном соотношении семена : вода = 1:1, разделяли на контрольные и опытные, опытные облучали КВЧ при мощности потока излучения 1 мВт/см2, экспозиция 3 мин. Все семена помещали в чашки Петри для проращивания в воде при температуре +20°С. Учет длины корня у проросших семян осуществляли через 48 ч и через 56 ч от начала опыта. В опытном варианте с облучением сухих семян отмечено незначительное отличие от контроля (на 4% через 48 ч и на 6% через 56 ч). Облучение увлажненных семян привело к увеличению количества семян с длиной корня ≥0,5 см через 48 ч на 45% и количества семян с длиной корня ≥1 см через 56 ч на 40% по сравнению с контролем.

Пример 4.

Семена редиса после предварительного увлажнения в течение 3 часов в дистиллированной воде при объемном соотношении семена:вода = 1:1 разделяли на контрольные и опытные. Опытные облучали КВЧ при мощности потока излучения 0,1 мВт/см2, экспозиция 5 мин. Все семена помещали в чашки Петри для проращивания в воде при температуре +20°С. Учет длины корня у проросших семян осуществляли через 40 ч от начала опыта. Количество проростков с длиной корня ≥0,5 см в опыте было 50%, в контроле лишь 20%.

Пример 5.

Из проросших на свету клубней картофеля Удача вырезали клубневые черенки с малой частью клубня. Отделяли контрольные черенки, опытные облучали КВЧ при мощности потока излучения 0,1 мВт/см2, экспозиция 5 мин и при мощности потока излучения 7 мВт/см2, экспозиция 5 мин. Все черенки высаживали в культуральные сосуды на увлажненный песок в люминостат. Через 10 суток вели учет качества выживших черенков. Высота опытных черенков, облученных при мощности потока излучения 0,1 мВт/см2, экспозиция 5 мин, была больше высоты контрольных черенков на 10-15%, корневая система более развита, чем в контроле. Высота опытных черенков, облученных при мощности потока излучения 7 мВт/см2, экспозиция 5 мин, была меньше высоты контрольных черенков на 7-12%, корневая система менее развита, чем в контроле.

Таким образом, предложен высокоэффективный способ стимулирования роста растений на ранних стадиях развития воздействием электромагнитного поля крайневысокой частоты, который позволит существенно снизить энергозатраты и легко может быть реализован в сельскохозяйственном производстве. Заявленный способ является универсальным, так как испытан на нескольких видах растений. При увеличении мощности потока КВЧ излучения от оптимальной наблюдается ингибирующее действие, что может использоваться в некоторых случаях, например, для угнетения нежелательного сезонного прорастания клубней картофеля.

Похожие патенты RU2657476C1

название год авторы номер документа
Способ тестирования эффективности рострегулирующего воздействия на растения 2017
  • Андреев Степан Николаевич
  • Мельник Николай Николаевич
  • Савранский Валерий Васильевич
  • Апашева Людмила Магомедовна
  • Лобанов Антон Валерьевич
  • Рубцова Наталья Анатольевна
  • Овчаренко Елена Николаевна
RU2663284C1
Способ повышения всхожести семян и стрессоустойчивости сеянцев хвойных пород 2022
  • Апашева Людмила Магомедовна
  • Смурова Лидия Александровна
  • Касаикина Ольга Тарасовна
  • Лобанов Антон Валерьевич
  • Овчаренко Елена Николаевна
  • Борулева Екатерина Алексеевна
  • Савранский Валерий Васильевич
RU2790449C1
СПОСОБ ПОВЫШЕНИЯ СОДЕРЖАНИЯ АЗОТФИКСИРУЮЩИХ БАКТЕРИЙ РОДА AZOTOBACTER В РИЗОСФЕРЕ ВСХОДОВ, СЕЯНЦЕВ СОСНЫ И ЕЛИ (ВАРИАНТЫ) 2006
  • Морозов Геннадий Александрович
  • Стахова Наталия Евгеньевна
  • Ведерников Николай Михайлович
  • Ратушняк Анна Александровна
  • Андреева Марина Геннадьевна
  • Назиров Алмаз Аминович
RU2324319C1
Способ предпосевной обработки семян среднеспелых сортов сои 2018
  • Синеговская Валентина Тимофеевна
  • Каманина Лариса Анатольевна
  • Васильев Михаил Михайлович
  • Петров Олег Федорович
RU2683041C1
СПОСОБ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР 2022
  • Виноградов Дмитрий Валериевич
  • Соколов Андрей Андреевич
  • Зубкова Татьяна Владимировна
  • Голубенко Михаил Иванович
RU2785458C1
СПОСОБ ПРЕДПОСЕВНОЙ ОБРАБОТКИ ЗЕРНОБОБОВЫХ КУЛЬТУР 2010
  • Мазуров Владимир Николаевич
  • Кожухарь Анатолий Юрьевич
  • Кожухарь Андрей Анатольевич
RU2433584C1
Способ повышения урожайности среднеспелых сортов сои при использовании низкотемпературной аргоновой плазмы для предпосевной обработки семян 2020
  • Синеговская Валентина Тимофеевна
  • Михайлова Мария Павловна
  • Васильев Михаил Михайлович
  • Петров Олег Федорович
RU2740815C1
СПОСОБ ПРЕДПОСЕВНОЙ СТИМУЛЯЦИИ СЕМЯН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Даниловских Михаил Геннадьевич
  • Винник Людмила Ивановна
  • Горелкин Александр Дмитриевич
RU2565822C1
СПОСОБ УЛУЧШЕНИЯ МИКРОБИОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ ПОЧВЫ (ВАРИАНТЫ) 2014
  • Морозов Геннадий Александрович
  • Морозов Олег Геннадьевич
  • Степура Аскольд Валентинович
  • Стахова Наталия Евгеньевна
  • Таланов Иван Павлович
RU2583095C1
СПОСОБ КОМБИНИРОВАННОГО ОБЕЗЗАРАЖИВАНИЯ И ПРЕДПОСЕВНОЙ СТИМУЛЯЦИИ СЕМЯН 2021
  • Еремин Анатолий Дмитриевич
  • Спиридонов Олег Борисович
  • Ковалев Андрей Владимирович
  • Ракитин Андрей Николаевич
RU2764897C1

Иллюстрации к изобретению RU 2 657 476 C1

Реферат патента 2018 года Способ стимулирования роста растений на ранних стадиях развития воздействием электромагнитного поля крайневысокой частоты

Изобретение относится к сельскому хозяйству. Предложен способ стимулирования роста растений на ранних стадиях развития воздействием электромагнитного поля. При этом семена растений или черенки картофеля обрабатывают электромагнитным полем крайневысокой частоты при мощности потока излучения 0,1-5,0 мВт/см2 и экспозиции обработки 3-5 мин. Семена растений предварительно увлажняют. Способ обеспечивает высокоэффективное стимулирование семян для дальнейшего прорастания и развития. 1 з.п. ф-лы, 1 ил., 2 табл., 5 пр.

Формула изобретения RU 2 657 476 C1

1. Способ стимулирования роста растений на ранних стадиях развития воздействием электромагнитного поля, отличающийся тем, что семена растений или черенки картофеля обрабатывают электромагнитным полем крайневысокой частоты при мощности потока излучения 0,1-5,0 мВт/см2 и экспозиции обработки 3-5 мин, при этом семена растений предварительно увлажняют.

2. Способ по п. 1, отличающийся тем, что для увлажнения семян их замачивают в воде в течение 3-х часов при объемном соотношении семена:вода =1:1.

Документы, цитированные в отчете о поиске Патент 2018 года RU2657476C1

СПОСОБ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН ГОРЧИЦЫ ЭЛЕКТРОМАГНИТНЫМ ПОЛЕМ СВЕРХВЫСОКОЙ ЧАСТОТЫ 2008
  • Мещеряков Андрей Васильевич
  • Бастрон Андрей Владимирович
  • Цугленок Николай Васильевич
  • Халанская Анна Петровна
  • Цугленок Галина Ивановна
RU2373676C1
СПОСОБ ОБРАБОТКИ СЕМЯН СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР 1997
  • Магеровский В.В.
  • Куценко А.Н.
  • Барышев М.Г.
  • Ильченко Г.П.
  • Касьянов Г.И.
RU2134944C1
СПОСОБ ПОДГОТОВКИ СЕМЯН К ПОСЕВУ 2005
  • Цугленок Галина Ивановна
  • Халанская Анна Петровна
  • Заплетина Анна Владимировна
  • Василенко Александр Александрович
RU2300865C1
СПОСОБ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН РАСТЕНИЙ 2005
  • Филиппов Александр Константинович
  • Федоров Михаил Анатольевич
  • Филиппов Денис Александрович
RU2293456C1

RU 2 657 476 C1

Авторы

Апашева Людмила Магомедовна

Лобанов Антон Валерьевич

Рубцова Наталья Анатольевна

Горшенев Владимир Николаевич

Андреев Степан Николаевич

Мельник Николай Николаевич

Савранский Валерий Васильевич

Даты

2018-06-14Публикация

2017-07-24Подача