СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛИМЕРНОГО КОМПОЗИЦИОННОГО РАДИАЦИОННО-ЗАЩИТНОГО МАТЕРИАЛА Российский патент 2018 года по МПК G21F1/10 

Описание патента на изобретение RU2658327C1

Изобретение относится к области технологий изготовления полимерных композиционных материалов для защиты от различного рода излучений, в частности радиационной защиты.

Известен способ получения нейтронозащитного материала из патента РФ №2069904, МПК G21F 1/10, публ. 27.11.1996 г., БИ №33, в котором получают полимерный композиционный материал, состоящий из связующего синтетический бутадиеновый, изопреновый или бутадиен-нитрильный каучук, наполнитель - фтористый литий, фторопласт и ионол и подобные ему соединения в качестве агентов для снижения вязкости композиции, повышения механической прочности и улучшения защитных свойств готового материала.

К недостаткам аналога относится отсутствие возможности точного изготовления деталей по заданным размерам, а также то, что готовый материал в связи с высокой эластичностью обладает недостаточно высокими прочностными свойствами и недостаточно высокими защитными свойствами, т.к. характеризуется сравнительно невысоким водородным индексом (показывающим величину стехиометрического соотношение элементного водорода и полимерной основы).

Известен в качестве наиболее близкого к заявляемому способ получения материала для биозащиты от нейтронов (патент РФ №2008730, МПК G21F 1/10, публ. 28.02.1994 г.), согласно которому получают полимерный композиционный материал на основе полимерного компонента - полиэтилена, в качестве технологических добавок - бромсодержащие ароматические соединения, поливиниловый спирт, малеиновый ангидрид и аморфный бор, гидроокись алюминия в качестве наполнителей, способствующие повышению огнестойкости и улучшению нейтронозащитных свойств готового материала.

К недостаткам прототипа относится отсутствие возможности точного изготовления деталей по заданным размерам, а также то, что листовой материал получают с использованием специального оборудования (пресс, экструдер) и сложной технологической оснастки. Известный процесс длителен, трудоемок и требует специальных условий. К недостаткам прототипа относится и то, что готовый материал обладает недостаточно высокими прочностными свойствами ввиду наличия значительных количеств наполнителя в рецептуре и недостаточно высокими защитными свойствами, т.к. характеризуется сравнительно невысоким водородным индексом.

Задачей изобретения является разработка простого эффективного способа получения полимерного композиционного радиационно-защитного материала любой формы с улучшенными защитными характеристиками.

Новый технический результат, обеспечиваемый при использовании предлагаемого способа по сравнению с прототипом, заключается в обеспечении возможности точного изготовления деталей по заданным размерам и произвольной формы, а также получении готового материала с высокими прочностными и защитными свойствами.

Указанные задачи и новый технический результат обеспечиваются тем, что в отличие от известного способа изготовления полимерного композиционного радиационно-защитного материала, включающего смешение полимерного компонента, комплексного наполнителя и технологических добавок с последующим формованием готового изделия, согласно изобретению смешению подвергают последовательно в качестве связующего эпоксидно-диановую смолу, в качестве наполнителя - гранулированный полипропилен, фторид лития, в качестве технологических добавок пластификатор - дибутилфталат, отвердитель - полиэтиленполиамин, которые берут в следующем соотношении: на каждые 100 масс. ч. эпоксидно-диановой смолы берут комплексный наполнитель из гранулированного полипропилена 160-185 масс. ч., - фторида лития 25-50 масс. ч., технологических добавок - дибутилфталата 10-20 масс. ч., полиэтиленполиамина 10-15 масс. ч., процесс смешения указанных ингредиентов производят таким образом, что сначала в предварительно покрытую антиадгезионной силиконсодержащей пастой форму засыпают гранулированный полипропилен в качестве первого компонента комплексного наполнителя, после чего на гранулированную массу полипропилена оказывают вибрационное воздействие с частотой не более 18 кГц в течение 5 10 минут, затем берут навеску эпоксидно-диановой смолы, в которую предварительно введена технологическая добавка - дибутилфталат в указанных соотношениях, нагревают полученную смесь до 70-80°С, добавляют в смесь в качестве второго компонента комплексного наполнителя фторид лития, вакуумируют до остаточного давления не менее 40 МПа, охлаждают смесь до 40-45°С, вводят отвердитель полиэтиленполиамин в смесь эпоксидно-диановой смолы, технологические добавки и второй компонент комплексного наполнителя, затем повторно вакуумируют и осуществляют заливку приготовленной заливочной смеси в форму с гранулированным полипропиленом, после чего осуществляют отверждение формуемуемого материала при комнатной температуре в течение не менее 24 часов.

Предлагаемый способ поясняется следующим образом.

Предварительно готовят смесь из заявляемых компонентов в заявляемых пределах их соотношений, а именно: на каждые 100 масс. ч. эпоксидно-диановой смолы берут - комплексный наполнитель из гранулированного полипропилена 160-185 масс. ч., - фторида лития 25-50 масс. ч., технологических добавок - дибутилфталата 10-20 масс. ч., полиэтиленполиамина 10-15 мас. ч. Указанные соотношения были определены экспериментально, при этом было показано, что именно в пределах указанных значений используемых ингредиентов достигается требуемый уровень прочностных свойств, обеспечивающий возможность получения деталей точно по заданным размерам с более высокими, чем в прототипе, защитными свойствами.

Процесс смешения указанных ингредиентов производят таким образом, что сначала в предварительно покрытую антиадгезионной силиконсодержащей пастой форму засыпают гранулы полипропилена в качестве первого компонента комплексного наполнителя. После этого на гранулированную массу полипропилена оказывают вибрационное воздействие с частотой не более 18 кГц в течение 5 10 минут, в результате которого достигается требуемая степень уплотнения полипропилена, вследствие чего нарабатываются высокие водородный индекс (величина концентрации водорода в объеме материала) и требуемые плотность и радиационно-защитные свойства в готовом материале.

Затем берут навеску эпоксидно-диановой смолы, в которую предварительно введена технологическая добавка дибутилфталат в указанных соотношениях, нагревают полученную смесь до 70-80°С, добавляют в смесь в качестве второго компонента комплексного наполнителя фторид лития, вакуумируют до остаточного давления не менее 40 МПа, охлаждают до 40-45°С, вводят отвердитель полиэтиленполиамин, смесь эпоксидно-диановой смолы, технологических добавок и второго компонента комплексного наполнителя,

Используемый режим обеспечивает получение однородной без воздушных включений массы и оптимизирует условия равномерного смешения всех ингредиентов.

Затем повторно вакуумируют полученную смесь и осуществляют заливку ее в форму с гранулированным полипропиленом и окончательно осуществляют отверждение формуемого материала при комнатной температуре в течение не менее 24 часов.

Формы предварительно покрывают антиадгезионной силиконсодержащей пастой, что необходимо для исключения риска

Затем повторно вакуумируют приготовленный заливочный состав и осуществляют его заливку в форму с гранулированным полипропиленом и окончательно осуществляют отверждение формуемого материала при комнатной температуре в течение не менее 24 часов.

Формы предварительно покрывают антиадгезионной силиконсодержащей пастой, что необходимо для исключения риска прилипания образцов к стенкам формы, исключения брака поверхности готовых изделий и обеспечения точности размеров и формы готовых изделий.

Таким образом, при использовании предлагаемого изобретения обеспечивается более высокий технический результат по сравнению с прототипом, заключающийся в обеспечении возможности точного изготовления деталей по заданным размерам и любой формы, а также получении готового материала с высокими прочностными и защитными свойствами.

Возможность промышленной реализации предлагаемого способа подтверждается следующими примерами конкретного исполнения.

Пример 1

В лабораторных условиях предлагаемым способом были изготовлены образцы полимерного композиционного радиационно-защитного материала на основе эпоксидно-диановой смолы, технологических добавок - дибутилфталата и полиэтиленполиамина и комплексного наполнителя: гранулированного полипропилена и фторида лития.

Готовилась заливочная форма, представляющая собой цилиндр с внутренним диаметром 20 мм, высотой 20 мм. Заливочная форма смазывалась антиадгезионной пастой «Силотерм ЭП-КПД» ТУ 6-02-5-009-92 для предотвращения прилипания образца к поверхности заливочной формы.

После подготовки заливочной формы проводилось заполнение объема заливочной формы гранулированным полипропиленом марки PPH030GP/1 (ООО «Томскнефтехим», г. Томск) ТУ 2211-103-70353562-2013 в количестве 3,5 г. Размер гранул полипропилена составлял 5,0 мм.

Заполненная форма устанавливалась на вибрационную платформу и подвергалась вибрационному воздействию с частотой 18 кГц в течение 5 минут.

Готовился заливочный состав, состоящий из эпоксидно-диановой смолы марки ЭД-20 ГОСТ 10587-84, пластификатора дибутилфталата ГОСТ 8728-88, второго компонента комплексного наполнителя фторида лития ТУ 6-09-3529-84 и полиэтиленполиамина ТУ 2413-357-00203447-99 в качестве отвердителя.

Рецептура заливочного состава представлена ниже:

Смола эпоксидно-диановая ЭД-20, масс. ч. 100 Дибутилфталат, масс. ч. 20 Фторид лития, масс. ч. 25 Полиэтиленполиамин, масс. ч. 15

Приготовление заливочного состава проводилось следующим образом. В навеску смолы ЭД-20 добавляли дибутилфталат и подогревали до температуры 70°С при тщательном перемешивании. Нагретую до 70°С смесь из эпоксидно-диановой смолы и дибутилфталата вакуумировали в течение 10 минут при остаточном давлении не более 40 ГПа. Далее в смесь эпоксидно-диановой смолы и дибутилфталата добавляли фторид лития, перемешивали в течение 5 минут, вакуумировали 10 минут при остаточном давлении не более 40 ГПа и охлаждали до 40°С, после чего вводили полиэтиленполиамин. Заливочный состав перемешивали 10 минут до достижения однородного состояния и вакуумировали при остаточном давлении не более 40 ГПа в течение 5 минут.

Заливочный состав в количестве 3,5 г выливался в заливочную форму, заполняя пространство между гранулами полипропилена в заливочной форме.

Отверждение проводилось при комнатной температуре в течение 24 часов. Образец извлекался из формы и определялись следующие характеристики материала: плотность, предел прочности при сжатии и модуль упругости при сжатии.

В получаемом материале обеспечен «водородный индекс» 10,9%, что является критерием повышенной радиационно-защитной функции готовых изделий.

Образцы полученного указанным образом материала подвергают контрольным испытаниям, результаты которых сведены в таблицу 1.

Пример 2

В условиях примера 1, но содержание полипропилена составляет 3,7 г, содержание фторида лития в рецептуре составляет 50 масс. ч.

Образцы полученного указанным образом материала подвергают контрольным испытаниям, результаты которых сведены в таблицу 1.

Пример 3

В лабораторных условиях заливочным составом было опробовано изготовление полимерного композиционного радиационно-защитного материала в эластичной форме, для изготовления которой использовалась «мастер-модель».

В качестве «мастер-модели» для имитации многочисленных изгибов и переходов использовалась пластиковая бутылка.

Пластиковая бутылка жестко фиксировалась у основания и горлышка на лабораторном штативе. Закрепленная в штативе бутылка в подвешенном состоянии была помещена в заливочную форму с примерно равномерными зазорами относительно стенок формы. В зазоры между «мастер-моделью» и стенками заливаемой формы заливался перемешанный с катализатором №68 ТУ 38.303-04-05-90 низкомолекулярный полимер «Опросил», при этом навеска низкомолекулярного полимера «Стиросил» составляла 800 г, навеска катализатора №68 - 40 г.

Заливаемую форму с укрепленной в ней «мастер-моделью» оставляли на 24 часа до завершения процесса отверждения низкомолекулярного полимера «Стиросил». После процесса отверждения пластиковую бутылку извлекали из отвержденной эластичной формы. Далее эластичную форму использовали для изготовления полимерного композиционного радиационно-защитного материала методом заливки.

Далее по примеру 2.

Пример 4

В лабораторных условиях были изготовлены образцы полимерного композиционного радиационно-защитного материала на основе эпоксидно-диановой смолы, технологических добавок - дибутилфталата и полиэтиленполиамина, и наполнителя - гранулированного полипропилена.

Готовилась заливочная форма, представляющая собой цилиндр с внутренним диаметром 20 мм, высотой 20 мм. Заливочная форма смазывалась антиадгезионной пастой «Силотерм ЭП-КПД» ТУ 6-02-5-009-92 для предотвращения прилипания образца к поверхности заливочной формы.

После подготовки заливочных форм проводилось заполнение объема заливочных форм гранулированным полипропиленом марки PPH030GP/1 (ООО «Томскнефтехим», г. Томск) ТУ 2211-103-70353562-2013 в количестве 3,7 масс. ч. Размер гранул полипропилена составлял 5,0 мм.

Заполненная форма устанавливалась на вибрационную платформу и подвергалась вибрационному воздействию с частотой 18 кГц в течение 5 минут.

Готовился заливочный состав, состоящий из эпоксидно-диановой смолы марки ЭД-20 ГОСТ 10587-84, пластификатора дибутилфталата ГОСТ 8728-88 и полиэтиленполиамина ТУ 2413-357-00203447-99 в качестве отвердителя.

Рецептура заливочного состава представлена ниже:

Смола эпоксидно-диановая ЭД-20, масс. ч. 100 Дибутилфталат, масс. ч. 20 Полиэтиленполиамин, масс. ч. 15

Приготовление заливочного состава проводилось следующим образом. В навеску смолы ЭД-20 добавляли дибутилфталат и подогревали до температуры 70°С при тщательном перемешивании. Нагретую до 70°С смесь из эпоксидно-диановой смолы и дибутилфталата вакуумировали в течение 10 минут при остаточном давлении не более 40 ГПа. Далее смесь из эпоксидно-диановой смолы и дибутилфталата охлаждали до 40°С, после чего вводили в нее полиэтиленполиамин, перемешивали 10 минут до достижения однородного состояния и окончательно вакуумировали при остаточном давлении не более 40 ГПа в течение 5 минут.

Заливочный состав в количестве 3,5 г выливался в заливочную форму, заполняя пространство между гранулами полипропилена в заливочной форме.

Отверждение проводилось при комнатной температуре в течение 24 часов. Образец извлекался из формы и определялись следующие характеристики материала: плотность, предел прочности при сжатии и модуль упругости при сжатии.

В получаемом материале обеспечен «водородный индекс» 11,3%, что является критерием повышенной радиационно-защитной функции готовых изделий.

Образцы полученного указанным образом материала подвергались контрольным испытаниям, результаты которых сведены в таблицу 1.

Заявляемый способ опробован для случая отсутствия фторида лития для повышения «водородного индекса», а значит улучшения защитных свойств.

Похожие патенты RU2658327C1

название год авторы номер документа
КОМПАУНД ДЛЯ СИЛОВЫХ КОНСТРУКЦИОННЫХ ИЗДЕЛИЙ И СПОСОБ ИЗГОТОВЛЕНИЯ СИЛОВЫХ КОНСТРУКЦИОННЫХ ИЗДЕЛИЙ НА ЕГО ОСНОВЕ 1996
  • Куликов Г.А.
  • Преображенский И.М.
  • Акимов Б.А.
  • Никитина Н.Л.
  • Мальцева Г.К.
  • Шебашова Н.М.
  • Шебашов Ю.Н.
  • Чеснокова И.В.
RU2108353C1
Состав для диэлектрической полимерной композиции 2016
  • Чухланов Владимир Юрьевич
  • Селиванов Олег Григорьевич
  • Чухланова Наталья Владимировна
  • Киреева Юлия Геннадьевна
RU2619103C1
Огнестойкая теплозащитная лакокрасочная композиция 2021
  • Буравов Борис Андреевич
  • Бочкарёв Евгений Сергеевич
  • Гричишкина Назмия Хуршид-Кызы
  • Тужиков Олег Олегович
RU2777894C1
Полимер-квазикристаллическая порошковая композиция для получения антикоррозийных защитных покрытий 2016
  • Чуков Дилюс Ирекович
  • Степашкин Андрей Александрович
  • Чердынцев Виктор Викторович
  • Калошкин Сергей Дмитриевич
  • Максимкин Алексей Валентинович
  • Няза Кирилл Вячеславович
  • Мостовая Ксения Сергеевна
RU2630796C1
Огнестойкая композиция 2018
  • Буравов Борис Андреевич
  • Бочкарёв Евгений Сергеевич
  • Лавникова Ирина Владимировна
  • Майзель Валентин Вениаминович
  • Тужиков Олег Олегович
  • Тужиков Олег Иванович
RU2688622C1
СОСТАВ ДЛЯ ПОКРЫТИЯ 2007
  • Кузнецова Вера Аркадьевна
  • Кузнецов Георгий Владимирович
  • Кондрашов Эдуард Константинович
  • Владимирский Виктор Николаевич
  • Семенова Людмила Викторовна
RU2335521C1
Компонентный состав полимерной композиции для восстановления деструктивных участков элементов деревянных конструкций 2018
  • Рощина Светлана Ивановна
  • Смирнов Евгений Александрович
  • Лукин Михаил Владимирович
  • Лукина Анастасия Васильевна
  • Лисятников Михаил Сергеевич
RU2697564C1
Композиционный материал для защиты от внешних воздействующих факторов и способ его получения 2018
  • Есаулов Сергей Константинович
  • Есаулова Целина Вацлавовна
RU2721323C1
КОМПАУНД 2015
  • Зубакин Сергей Иванович
  • Шишов Сергей Владимирович
  • Романов Игорь Васильевич
  • Баранов Иван Митрофанович
  • Горбаш Дмитрий Валентинович
  • Горожанкин Игорь Николаевич
RU2613987C2
ИЗНОСОСТОЙКИЙ ЗАЩИТНЫЙ ПОЛИМЕРНЫЙ СОСТАВ 2004
  • Зайцев Г.Е.
  • Демченко А.И.
  • Владимирский В.Н.
  • Кузнецова В.А.
  • Агапов О.А.
  • Труфанов А.Г.
  • Карюгин М.А.
  • Бурлов В.В.
RU2261879C1

Реферат патента 2018 года СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛИМЕРНОГО КОМПОЗИЦИОННОГО РАДИАЦИОННО-ЗАЩИТНОГО МАТЕРИАЛА

Изобретение относится к области изготовления полимерных композиционных материалов для защиты от различного рода излучений, в частности радиационной защиты. Смешению подвергают последовательно в качестве связующего - эпоксидно-диановую смолу - 100 масс. ч., в качестве наполнителя - гранулированный полипропилен - 160-185 масс. ч., фторид лития - 25-50 масс. ч., в качестве технологических добавок пластификатор дибутилфталат - 10-20 масс. ч., отвердитель - полиэтиленполиамин - 10-15 масс. ч., сначала в форму засыпают гранулированный полипропилен, после чего оказывают вибрационное воздействие с частотой не более 18 кГц в течение 5-10 минут, затем берут навеску эпоксидно-диановой смолы с дибутилфталатом, нагревают полученную смесь до 70-80°С, добавляют в нее фторид лития, вакуумируют, охлаждают до 40-45°С, вводят полиэтиленполиамин, затем повторно вакуумируют и заливают в форму с гранулированным полипропиленом, после чего осуществляют отверждение формуемого материала при комнатной температуре в течение не менее 24 часов. Изобретение обеспечивает возможность точного изготовления деталей по заданным размерам и произвольной формы, а также получение готового материала с высокими прочностными и защитными свойствами. 1 табл., 4 пр.

Формула изобретения RU 2 658 327 C1

Способ изготовления полимерного композиционного радиационно-защитного материала, включающий смешение полимерного компонента, комплексного наполнителя и технологических добавок с последующим формованием готового изделия, отличающийся тем, что смешению подвергают последовательно в качестве связующего эпоксидно-диановую смолу, в качестве наполнителя - гранулированный полипропилен, фторид лития, в качестве технологических добавок пластификатор - дибутилфталат, отвердитель - полиэтиленполиамин, которые берут в следующем соотношении: на каждые 100 масс. ч. эпоксидно-диановой смолы берут комплексный наполнитель из гранулированного полипропилена 160-185 масс. ч. и фторида лития 25-50 масс. ч., технологические добавки - дибутилфталат 10-20 масс. ч., полиэтиленполиамин - 10-15 масс. ч., процесс смешения указанных ингредиентов производят таким образом, что сначала в предварительно покрытую антиадгезионной силиконсодержащей пастой форму засыпают гранулированный полипропилен в качестве первого компонента комплексного наполнителя, после чего на гранулированную массу полипропилена оказывают вибрационное воздействие с частотой не более 18 кГц в течение 5-10 минут, затем берут навеску эпоксидно-диановой смолы, в которую предварительно введена технологическая добавка дибутилфталат в указанных соотношениях, нагревают полученную смесь до 70-80°С, добавляют в нее в качестве второго компонента комплексного наполнителя фторид лития, вакуумируют до остаточного давления не менее 40 МПа, охлаждают до 40-45°С, вводят отвердитель - полиэтиленполиамин в смесь эпоксидно-диановой смолы, технологические добавки и второй компонент комплексного наполнителя, затем повторно вакуумируют и осуществляют заливку приготовленного заливочного состава в форму с гранулированным полипропиленом, после чего осуществляют отверждение формуемого материала при комнатной температуре в течение не менее 24 часов.

Документы, цитированные в отчете о поиске Патент 2018 года RU2658327C1

МАТЕРИАЛ БИОЗАЩИТЫ ОТ НЕЙТРОНОВ 1992
  • Климанова Р.С.
  • Сеземова В.И.
  • Русакова М.В.
  • Васильев Г.А.
  • Орлов Ю.В.
RU2008730C1
СПОСОБ ПОЛУЧЕНИЯДИАЛКИЛ-8-[а-АЛКОКСИ( 0
SU259877A1
RU 2056445 C1, 20.03.1996
CN 104710727 A, 17.06.2015
US 8173723 B2, 08.05.2012.

RU 2 658 327 C1

Авторы

Дорофеев Андрей Алексеевич

Бочкарева Наталья Николаевна

Клюева Татьяна Анатольевна

Назарова Елена Савельевна

Самсонкин Александр Александрович

Даты

2018-06-20Публикация

2017-07-17Подача