ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к области энергомашиностроения.
УРОВЕНЬ ТЕХНИКИ
Ближайший прототип заявленного изобретения патент РФ 2550228 «Электрический генератор переменного тока с двигателем стирлинга».
ЦЕЛЬ ЗАЯВЛЕННОГО ИЗОБРЕТЕНИЯ
Основной недостаток устройства по патенту РФ 2550228 состоит в том, что частота колебаний рабочего поршня, соединенного со штоком, напрямую зависит от интенсивности подводимого тепла в «горячую» полость цилиндра. Следовательно, эффективность преобразования кинетической энергии рабочего поршня и штока в электроэнергию также напрямую зависит от интенсивности подводимого тепла в «горячую» полость цилиндра. Цель заявленного изобретения состоит в обеспечении максимальной эффективности трансформации тепловой энергии в электроэнергию при неравномерном подводе тепла к теплообменнику.
СУЩНОСТЬ ЗАЯВЛЕННОГО ИЗОБРЕТЕНИЯ
Способ преобразования тепловой энергии в электроэнергию свободнопоршневым энергомодулем с линейным электрогенератором и теплообменником состоит в следующем. Тепловая энергия от топки, лучистая энергия солнца и т.д. подводятся к теплообменнику 1 и нагревают воздух во внутренней полости теплообменника 1. Система управления отслеживает величину температуры и давления воздуха в теплообменнике 1. В момент времени, когда температура и давление воздуха в теплообменнике 1 достигнет введенного в систему управления предела максимальной величины давления и температуры воздуха, система управления открывает впускной клапан цилиндра 2. Максимальная величина давления и температуры воздуха в теплообменнике 1 выбирается из соображения прочностных характеристик материала теплообменника 1. Воздух из теплообменника 1 через впускной клапан цилиндра 2 поступает в рабочую (правую по рисунку) полость поршня 3. Под действием воздуха поршень 3 начинает движение из исходной точки движения в конечную (левую) точку движения. Из компрессорной (левой) полости поршня 3 воздух через обратный клапан пневмоаккумулятора 4 заряжает пневмоаккумулятор 5. Магнитный поток статорного магнита линейного электрогенератора 6 (статорный магнит может быть постоянным магнитом или электромагнитом) замыкается через якорь линейного электрогенератора 7. В результате движения якоря линейного электрогенератора 7 площадь поверхности якоря линейного электрогенератора 7 и примыкающей к якорю линейного электрогенератора 7 площади поверхности статорного магнита линейного электрогенератора 6 уменьшается. Соответственно изменяется магнитный поток в якоре линейного электрогенератора 7 и статорном магните линейного электрогенератора 6, и в катушке линейного электрогенератора 8 генерируется импульс электроэнергии. В момент времени прибытия поршня 3 в конечную (левую) крайнюю точку движения система управления закрывает впускной клапан цилиндра 2 и открывает выпускной клапан цилиндра 9. Якорь линейного электрогенератора 7 притягивается к противоположному полюсу статорного магнита линейного электрогенератора 6. В результате поршень 3 движется в исходное для генерирования очередного импульса электроэнергии положение. Отработавший воздух из рабочей полости поршня 3 через открытый выпускной клапан цилиндра 9 вытесняется в атмосферу, а через обратный клапан цилиндра 10 воздух из атмосферы засасывается в компрессорную полость поршня 3. Одновременно система управления открывает клапан пневмоаккумулятора 11 и воздух из пневмоаккумулятора 5 поступает в теплообменник 1, в котором происходит очередной цикл нагрева воздуха до температуры и давления, при котором температура и давление воздуха в теплообменнике 1 достигнут введенного в систему управления предела максимальной величины давления и температуры воздуха. После чего цикл генерирования импульса электроэнергии повторяется. Таким образом, обеспечивается максимальная эффективность преобразования тепловой энергии в электроэнергию при неравномерном подводе тепла к теплообменнику 1.
РАСКРЫТИЕ ЗАЯВЛЕННОГО ИЗОБРЕТЕНИЯ
Способ трансформации тепловой энергии в электроэнергию свободнопоршневым энергомодулем с линейным электрогенератором и теплообменником, включающим теплообменник, систему управления, впускной клапан цилиндра, поршень, обратный клапан пневмоаккумулятора, пневмоаккумулятор, статорный магнит линейного электрогенератора, якорь линейного электрогенератора, катушку линейного электрогенератора, выпускной клапан цилиндра, обратный клапан цилиндра и клапан пневмоаккумулятора, отличающийся тем, что тепловая энергия от топки подводится к теплообменнику и нагревает воздух во внутренней полости теплообменника, система управления отслеживает величину температуры и давления воздуха в теплообменнике, в момент времени, когда температура и давление воздуха в теплообменнике достигнут введенного в систему управления предела максимальной величины давления и температуры воздуха, система управления открывает впускной клапан цилиндра, воздух из теплообменника через впускной клапан цилиндра поступает в рабочую полость поршня, под действием воздуха поршень начинает движение из исходной точки движения в конечную точку движения, из компрессорной полости поршня воздух через обратный клапан пневмоаккумулятора заряжает пневмоаккумулятор, магнитный поток статорного магнита линейного электрогенератора замыкается через якорь линейного электрогенератора, в результате движения якоря линейного электрогенератора площадь поверхности якоря линейного электрогенератора и примыкающей к якорю линейного электрогенератора площади поверхности статорного магнита линейного электрогенератора уменьшается, соответственно изменяется магнитный поток в якоре линейного электрогенератора и статорном магните линейного электрогенератора, и в катушке линейного электрогенератора генерируется импульс электроэнергии, в момент времени прибытия поршня в конечную крайнюю точку движения система управления закрывает впускной клапан цилиндра и открывает выпускной клапан цилиндра, якорь линейного электрогенератора притягивается к противоположному полюсу статорного магнита линейного электрогенератора, в результате поршень движется в исходное для генерирования очередного импульса электроэнергии положение, отработавший воздух из рабочей полости поршня через открытый выпускной клапан цилиндра вытесняется в атмосферу, а через обратный клапан цилиндра воздух из атмосферы засасывается в компрессорную полость поршня, одновременно система управления открывает клапан пневмоаккумулятора и воздух из пневмоаккумулятора поступает в теплообменник, в котором происходит очередной цикл нагрева воздуха до температуры и давления, при которых температура и давление воздуха в теплообменнике достигнут введенного в систему управления предела максимальной величины давления и температуры воздуха, после чего цикл генерирования импульса электроэнергии повторяется.
ОСУЩЕСТВЛЕНИЕ ЗАЯВЛЕННОГО ИЗОБРЕТЕНИЯ
Затраты на НИОКР свободнопоршневого энергомодуля с линейным электрогенератором и теплообменником не могут существенно отличаться от таковых при проектировании классического ДВС.
ГРАФИЧЕСКИЙ МАТЕРИАЛ
Фигура. Принципиальная схема свободнопоршневого энергомодуля с линейным электрогенератором и теплообменником
1 - теплообменник; 2 - впускной клапан цилиндра; 3 - поршень; 4 - обратный клапан пневмоаккумулятора; 5 - пневмоаккумулятор; 6 - статорный магнит линейного электрогенератора; 7 - якорь линейного электрогенератора; 8 - катушка линейного электрогенератора; 9 - выпускной клапан цилиндра; 10 - обратный клапан цилиндра; 11 - клапан пневмоаккумулятора.
Изобретение относится к области энергомашиностроения. Технический результат направлен на обеспечение максимальной эффективности трансформации тепловой энергии в электроэнергию при неравномерном подводе тепла к теплообменнику. Тепловая энергия от топки, лучистая энергия солнца и т.д. подводятся к теплообменнику и нагревают воздух во внутренней полости теплообменника. Система управления отслеживает величину температуры и давления воздуха в теплообменнике. В момент времени, когда температура и давление воздуха в теплообменнике достигнут введенного в систему управления предела максимальной величины давления и температуры воздуха, система управления открывает впускной клапан цилиндра. Максимальная величина давления и температуры воздуха в теплообменнике выбирается из соображения прочностных характеристик материала теплообменника. Воздух из теплообменника через впускной клапан цилиндра поступает в рабочую полость поршня. Под действием воздуха поршень начинает движение из исходной точки движения в конечную точку движения. Из компрессорной полости поршня воздух через обратный клапан пневмоаккумулятора заряжает пневмоаккумулятор. Магнитный поток статорного магнита линейного электрогенератора замыкается через якорь линейного электрогенератора. В результате движения якоря линейного электрогенератора площадь поверхности якоря линейного электрогенератора и примыкающей к якорю линейного электрогенератора площади поверхности статорного магнита линейного электрогенератора уменьшается. Соответственно изменяется магнитный поток в якоре линейного электрогенератора и статорном магните линейного электрогенератора, и в катушке линейного электрогенератора генерируется импульс электроэнергии. В момент времени прибытия поршня в конечную крайнюю точку движения система управления закрывает впускной клапан цилиндра и открывает выпускной клапан цилиндра. Якорь линейного электрогенератора притягивается к противоположному полюсу статорного магнита линейного электрогенератора. В результате поршень движется в исходное для генерирования очередного импульса электроэнергии положение. Отработавший воздух из рабочей полости поршня через открытый выпускной клапан цилиндра вытесняется в атмосферу, а через обратный клапан цилиндра воздух из атмосферы засасывается в компрессорную полость поршня. Одновременно система управления открывает клапан пневмоаккумулятора и воздух из пневмоаккумулятора поступает в теплообменник, в котором происходит очередной цикл нагрева воздуха до температуры и давления, при котором температура и давление воздуха в теплообменнике достигнут введенного в систему управления предела максимальной величины давления и температуры воздуха. После чего цикл генерирования импульса электроэнергии повторяется. 1 ил.
Способ трансформации тепловой энергии в электроэнергию свободнопоршневым энергомодулем с линейным электрогенератором и теплообменником, включающим теплообменник, систему управления, впускной клапан цилиндра, поршень, обратный клапан пневмоаккумулятора, пневмоаккумулятор, статорный магнит линейного электрогенератора, якорь линейного электрогенератора, катушку линейного электрогенератора, выпускной клапан цилиндра, обратный клапан цилиндра и клапан пневмоаккумулятора, отличающийся тем, что тепловая энергия от топки подводится к теплообменнику и нагревает воздух во внутренней полости теплообменника, система управления отслеживает величину температуры и давления воздуха в теплообменнике, в момент времени, когда температура и давление воздуха в теплообменнике достигнет введенного в систему управления предела максимальной величины давления и температуры воздуха, система управления открывает впускной клапан цилиндра, воздух из теплообменника через впускной клапан цилиндра поступает в рабочую полость поршня, под действием воздуха поршень начинает движение из исходной точки движения в конечную точку движения, из компрессорной полости поршня воздух через обратный клапан пневмоаккумулятора заряжает пневмоаккумулятор, магнитный поток статорного магнита линейного электрогенератора замыкается через якорь линейного электрогенератора, в результате движения якоря линейного электрогенератора площадь поверхности якоря линейного электрогенератора и примыкающей к якорю линейного электрогенератора площади поверхности статорного магнита линейного электрогенератора уменьшается, соответственно изменяется магнитный поток в якоре линейного электрогенератора и статорном магните линейного электрогенератора, и в катушке линейного электрогенератора генерируется импульс электроэнергии, в момент времени прибытия поршня в конечную крайнюю точку движения система управления закрывает впускной клапан цилиндра и открывает выпускной клапан цилиндра, якорь линейного электрогенератора притягивается к противоположному полюсу статорного магнита линейного электрогенератора, в результате поршень движется в исходное для генерирования очередного импульса электроэнергии положение, отработавший воздух из рабочей полости поршня через открытый выпускной клапан цилиндра вытесняется в атмосферу, а через обратный клапан цилиндра воздух из атмосферы засасывается в компрессорную полость поршня, одновременно система управления открывает клапан пневмоаккумулятора и воздух из пневмоаккумулятора поступает в теплообменник, в котором происходит очередной цикл нагрева воздуха до температуры и давления, при котором температура и давление воздуха в теплообменнике достигнут введенного в систему управления предела максимальной величины давления и температуры воздуха, после чего цикл генерирования импульса электроэнергии повторяется.
ЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР ПЕРЕМЕННОГО ТОКА С ДВИГАТЕЛЕМ СТИРЛИНГА | 2012 |
|
RU2550228C2 |
СПОСОБ ПРИВОДА КОМПРЕССОРА ЗАРЯДКИ ПНЕВМОАККУМУЛЯТОРА АТМОСФЕРНЫМ ВОЗДУХОМ СИСТЕМЫ ПНЕВМАТИЧЕСКОГО ПРИВОДА ГАЗОРАСПРЕДЕЛИТЕЛЬНОГО КЛАПАНА И ТОПЛИВНОЙ ФОРСУНКИ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ РАБОЧИМ ТЕЛОМ ИЗ ДВУХ ЦИЛИНДРОВ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 2013 |
|
RU2528538C1 |
US 7498681 B1, 03.03.2009 | |||
WO 2007039733 A1, 12.04.2007. |
Авторы
Даты
2018-07-04—Публикация
2017-07-14—Подача